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Motivation

Motivation Young children engage in forms of intuitive scientific discov-
ery, building structured causal theories of their environment using many of
the principles that underpin professional science [1, 2]. Despite progress in
modeling many of these ideas, automatic discovery of models of realistic
phenomena from observation and interaction remains largely out of reach.

Objective Facilitate progress towards automatic scientific discovery, first
by introducing a representation of causal models that is expressive enough
to succinctly capture the complexities of real world phenomena, and second
by presenting a corpus of domains and accompanying benchmark challenge.

Contribution

Causal Inductive Synthesis Corpus A manually constructed collec-
tion of interactive domains, which abstract core causal concepts present in
real-world mechanisms and environments.
Autumn The Autumn language is a Turing-complete language for spec-
ifying causal probabilistic models. It allows succinct expression for models
that vary dynamically through time, respond to external input, have in-
ternal state and memory, exhibit probabilistic non-determinism, and have
complex causal dependencies between variables.

The Autumn Language

Autumn is a language for probabilistic causal models. It is designed to
express models that vary as a function of time or external input. Many
constructs are standard. These include the use of = for variable assignment,
and giving variables types by declaring them as x:Int.

Sequences Values in an Autumn program represent sequences that vary
with time. A value v at time tmay be (i) time invariant, i.e., vt = c for some
constant c, (ii) stateless and time varying, i.e, vt = f (t) for some function f ,
or (iii) stateful / recurrent sequences defined in terms of previous values, i.e.,
vt = f (vt−1). Sequences are defined using the init next construct, which
defines an initial value for a variable and an update rule to be performed on
subsequent time steps. Previous values of a variable can be accessed using
the prev primitive; for example, prev x gives the value of x at time t− 1.
Events Beyond init next, temporal events may also be specified using
the construct on, with the pattern on event intervention . An
event is any sequence of type Bool , and an intervention is a mod-
ification to a value.

Canonical Autumn Example

Figure 1: An Autumn program. This program simulates ants seeking food, starting at
t = 0 on the leftmost grid. A number of ants (grey) are initially randomly positioned on
the grid. On clicking, food (red) is placed at random positions on the board, and the ants
move in the direction of the closest food item. The food disappears once an ant arrives at
the same position. This process continues until all food items disappear.

The Causal Inductive Synthesis Corpus

We develop a corpus of interactive environments (CISC) using the Autumn
language, a sampling of which are shown in Figure 2. We formalize CISC as
well describe the two key synthesis challenges of passive and active discovery
as follows.

Specification Let L denote the set of all Autumn models. CISC is a
dataset D = (m1,m2, . . . ,mN) of N Autumn models, i.e., mi ∈ L. For
each modelm ∈ D, there is also a collection ofM test

m test trajectories T test
m =

(τ1, τ2, . . . , τMm) and M train
e train trajectories T test

m = (τ1, τ2, . . . , τM train
m

). A
trajectory is a pair (a,o), where a and o are finite sequences (of identical
length) of actions and observations respectively. The action space A allows
for selecting a grid-cell, pressing an arrow, performing no action, or stopping
a simulation. The observation space O is a colored grid of cells.

Figure 2: Example domains from the Causal Inductive Synthesis Corpus. From top-left
clockwise: a simulation of water interacting with a sink, a Tetris clone, a snake clone,
interacting magnets, food-seeking ants, obfuscated objects, a particle simulation, a simple
weather simulation.

Passive Discovery The passive inductive synthesis problem is to produce
a synthesizer s that maps a set of trajectories T train

m produced from a ground
truth Autumn modelm onto a hypothesis Autumn model m̂ = s(T train

m ).
The score of a hypothesis m̂ is a measure of the degree to which it matchesm
on the test trajectories. Letting sim denote a stochastic simulation function
such that sim(m, a) is a random variable over observations, the score of m
is marginal likelihood averaged over T testm :

scorem(m̂) = 1
M test

m

∑
(ami ,omi )∈T test

m

p(sim(m̂, ami ) = omi ).

The score of a synthesizer s is then the average score over D:

score(s) = 1
N

∑
m∈D

scoremi
(s(T train

m )).

Active Discovery In contrast to the passive case, in active discovery the
observational data is not given and must be produced by an active agent.
The active inductive synthesis problem is to produce a pair (π, σ) where
π : O × Φ→ A× Φ is a policy with internal memory Φ, and σ is stateful
synthesizer. The agent interacts with a model, producing observational
data until a stop action is performed. At this point a hypothesis model
m̂ = σ(T, φ) is produced as function of the internal state φ ∈ Φ of the
agent and the trajectory T = (a,o) it has observed.

References

[1] Laura Schulz. The origins of inquiry: Inductive inference and exploration
in early childhood. Trends in cognitive sciences, 16(7):382–389, 2012.
[2] Alison Gopnik. Scientific thinking in young children: Theoret-
ical advances, empirical research, and policy implications. Science,
337(6102):1623–1627, 2012.


	References

