
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Combining Functional and Automata Synthesis to

Discover Causal Reactive Programs

Ria A. Das
MIT

Joshua B. Tenenbaum
MIT

Armando Solar-Lezama
MIT

Zenna Tavares
Columbia University

Abstract

Note: This is a working document for an ongoing project. The
discussed results represent the current stage of the work, and
are subject to change as we continue to develop the methods.

ACM Reference Format:

RiaA. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna
Tavares. 2022. Combining Functional and Automata Synthesis to
Discover Causal Reactive Programs. In Proceedings of ACM Con-
ference (Conference’17). ACM, New York, NY, USA, 19 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

In the last decade, the traditional view of program synthe-
sis as a technique for automating programming tasks has
expanded with the growth of the following hypothesis: Pro-
grams, with their unique ability to compactly and inter-
pretably represent a wide variety of structured knowledge,
may also be an important model representation in artificial
intelligence (AI) systems. Recent work has demonstrated the
potential of using programs as a modeling mechanism in a
number of domains, such as learning rule-based programs
describing biological data and synthesizing computer-aided
design (CAD) programs from 3D drawings.

Much of this work at the intersection of program synthesis
and AI can be framed as addressing the challenge of theory
induction: Given an observation, what is the underlying the-
ory or model that generates or explains that observation?
We use theory to mean not just formal scientific theories, but
also everyday cognitive explanations that humans derive on
the fly to explain new observations. For example, a child who
has figured out how a new toy works after a few minutes
of play has come up with a theory of the toy’s mechanism.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

While there are many possibilities for the choice of theory
representation in AI systems, programs offer the benefits
that they can often be synthesized from small data (sample-
efficiency) and that their concise, modular form often gives
them strong generalization properties. These features have
made program synthesis especially popular in cognitive AI
as a route to building artificial agents that learn theories
from observation as effectively as humans.
Despite the promise of formulating theory induction as

program synthesis, existing methods of program synthesis
are not yet suited to capture the richness of the space of
theories that humans can learn from data, be it scientific or
casual. One critical limitation is that many real world phe-
nomena are reactive, time-varying systems, which update in
reaction to new inputs at every time. However, current meth-
ods of inductive program synthesis—synthesizing programs
from input-output examples—cannot synthesize non-trivial
reactive models. This is because synthesizing time-varying
latent state, the key step in learning any interesting reactive
model, is a fundamental problem that standard inductive
program synthesis techniques were not designed to handle.

Specifically, most existing inductive program synthesis ap-
proaches are purely functional, meaning that both the inputs
and outputs are fully observed, and the task is to construct a
function taking one to the other. In other words, there are no
concerns about identifying latent state, as the inputs and out-
puts are fully known. In a few other cases, inductive synthesis
has also been applied to tackle the setting of unsupervised
learning, in which hidden (latent) state representations are
learned from partially observed inputs. However, neither of
these method classes attempt to solve the full latent state
learning problem that underlies the reactive setting. There,
not only what the latent state representation is for every
input (time point) must be learned, as is the case in unsu-
pervised learning, but also how that latent state evolves over
time must be identified, in the form of programmatic rules.

For concreteness, we consider the simple yet rich domain
of Atari-style, time-varying 2D grid worlds (Figures 1, 2, and
3), which demonstrates these shortcomings of inductive pro-
gram synthesis. This particular domain is of great interest in
the AI and cognitive science communities, drawing its rele-
vance from the fact that humans are able to learn causal theo-
ries—full explanations of which stimuli cause which changes

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Ria A. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

in the environment—of grid worlds incredibly quickly, a feat
yet to be replicated by AI.
In the Mario-style game in this domain that is shown in

Figure 1, an agent (red) moves aroundwith arrow key presses
and can collect coins (yellow). If the agent has collected a
positive number of coins, when the human player clicks,
a bullet (gray) is released upwards from the agent’s posi-
tion, and the agent’s coin count is decremented. Otherwise,
clicking does nothing. Notably, the number of coins that the
agent possesses is not displayed anywhere on the grid at
any time, so the only way to write a program that models
this behavior is to define an unobserved or latent variable,
which tracks the number of coins (bullets) possessed by the
agent. In other words, there is no way to express why bullet
addition takes place using just the current visible state of
the program: the objects (with their locations and shapes)
and current user action (click, key press, or none). Instead,
we must define an invisible variable that can distinguish be-
tween two grid frames that are visually equivalent, but in
which the agent has collected different numbers of coins
(zero vs. some). Synthesizing this latent variable involves
both identifying the variable’s initial value, as well as learn-
ing functions that dictate when (on what stimulus) and how
(increment, decrement, etc.) that value will change. Crucially,
learning this dynamical latent state-based program from ob-
servations alone (a sequence of grid frames and user actions)
is not feasible with standard techniques.
To address this gap between current inductive program

synthesis approaches and the reactive setting, we develop a
novel program synthesis algorithm that unites two largely
orthogonal communities within programming languages:
the functional synthesis and automata synthesis communities.
Specifically, we show that we can inductively synthesize re-
active programs by splitting synthesis into two procedures,
a functional synthesis procedure and an automata synthesis
procedure. The functional synthesis step attempts to synthe-
size the parts of the program that do not depend on latent
state. If functional synthesis fails to synthesize a program
component explaining an observation, the automata synthe-
sis procedure is called. The automata synthesis procedure is
so named because the time-varying latent state in a reactive
system can be viewed as a finite state automaton, where the
labels on the automaton transitions are predicates in the
underlying domain-specific language (DSL) used for synthe-
sis (Figure 4). At a high level, based on the specifics of how
the functional synthesis step failed, the automata synthesis
procedure enriches the original program state with particular
new latent structure (e.g. a time-varying latent variable like
number of coins) that then allows that functional step to
succeed.
By combining functional and automata synthesis tech-

niques, our approach expands the horizon of synthesis prob-
lems that can be solved by either method alone. In particular,
while the functional synthesis community has demonstrated

impressive performance at synthesizing complex functional
transformations from input-output data, the applicability
of their techniques is limited by the fact that they cannot
synthesize state-based models, including reactive systems,
which are plentiful in the real world. On the other hand, the
automata synthesis community has seen great success at
synthesizing finite-state automata or transition systems from
traces, but their methods do not scale to domains with intri-
cate functional data transformations or very large numbers
of states (which are often more compactly represented using
program abstractions).

We suspect that this concept of integrating functional and
automata synthesis is valuable to a wide breadth of syn-
thesis domains. In this paper, we demonstrate its value by
instantiating it in the particular domain of 2D Atari-style
grid-worlds. We develop a DSL called Autumn (from au-
tomaton) that is designed to concisely express a variety of
causal dynamics within these grids. The inductive synthesis
problem addressed by our algorithm is: given a sequence of
observed grid frames and corresponding user actions (clicks
and keypresses), to synthesize the program in the Autumn
language that generates the observations. SinceAutumn pro-
grams encode causal dynamics, this synthesis problem is one
of causal theory induction, and is important in both cognitive
science and AI. These fields aspire to the goal of develop-
ing an artificial agent that can learn causal theories as well
as humans can, for which our hybrid functional-automata
synthesis approach offers a potential route.

Our synthesis algorithm, namedAutumnSynth, has three
variant implementations, each differing in the algorithm used
to perform automata synthesis from observed data. Two of
these algorithms rely on the Sketch system to discover a
minimal latent state automaton from examples, while the
third algorithm is a heuristic that greedily searches through
the space of automata. We construct a benchmark suite of 31
Autumn programs designed to express the diversity of time-
varying causal models that may be manifested in 2D grids,
and evaluate our algorithm implementations on this bench-
mark. Though subject to change as the work progresses,
in our preliminary results, we find that our heuristic algo-
rithm outperforms both Sketch implementations in both
accuracy—it solves the majority of the benchmarks—and run-
time—taking seconds to a few hours—especially on bench-
marks with large automata, signaling the promise of our
formulation. In sum, we make the following contributions:
(1) a novel inductive program synthesis algorithm that

learns causal reactive programs from observation data
(AutumnSynth);

(2) a guiding example of how to design synthesis algo-
rithms that integrate functional and automata synthe-
sis, enabling synthesis of programs beyond the scope
of either alone; and

(3) a benchmark dataset of Autumn programs to spur the
development of further algorithms in this space.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

2 Overview

In this section, we briefly describe the Autumn language
and AutumnSynth algorithm, and walk through a concrete
execution of the algorithm on the Mario program described
in the introduction.

2.1 The Autumn Language

Autumn was designed to concisely express a rich variety
of causal mechanisms in interactive 2D grid worlds (Figure
2). These mechanisms range from distillations of real-world,
everyday causal phenomena, such as water interacting with
a sink, plants growing upon exposure to sunlight, or an
egg breaking upon being dropped, to video game-inspired
domains such as Atari’s Space Invaders. The language is
functional reactive — it augments the standard functional lan-
guage definition with primitive support for temporal events.

Every Autumn program is composed of four parts (Figure
3). The first part defines the grid dimensions and background
color. The second part defines object types, which are simply
structs which define an object shape, or a list of 2D positions
each associated with a color, as well as a set of internal fields,
which store additional information about the object (e.g. a
Boolean healthy field may store an indicator of the object’s
health). The third part defines object instances, which are con-
crete instantiations of the object types defined previously,
as well as latent variables, which are values with type int,
string, or bool. Object instances and latent variables are
defined using a primitive Autumn language construct called
initnext, which defines a stream of values over time via the
syntax var = init expr1 next expr2. The initial value
of the variable (expr1) is set with init, and the value at
later time steps is defined using next. The next expression
(expr2) is re-evaluated at each subsequent time step to pro-
duce the new value of the variable at that time. Further, the
previous value of a variable may be accessed using the prim-
itive prev, e.g. prev var. The next expression frequently
utilizes the prev primitive to express dependence on the past.
For example, the definition of the agent object in the Mario
program from the introduction is agent = init (Agent
(Position 7 15)) next (moveDownNoCollision (prev
agent)), indicating that later values of the agent should
move down one unit from the previous value whenever that
is possible without collision.

Finally, the fourth segment of an Autumn program
defines what we call on-clauses, which are expressed via the
high-level form

on event
intervention,

where event is a predicate and intervention is a variable
update of the form var = expr, or multiple such updates. As
suggested by the name intervention, an on-clause represents

an override of the default modification to a variable that is
defined in the next clause. In particular, when the event
predicate evaluates to true, the new value of the variable var
at that specific time is computed by evaluating the associ-
ated intervention instead of the standard next expression.
Each on-clause may contain multiple update statements for
different variables, and a single program may contain mul-
tiple on-clauses. In the latter scenario, the on-clauses are
evaluated sequentially, with the effect that later on-clauses
may update a variable in a way that composes with updates
from earlier on-clauses, or completely overrides it. In the
rest of the discussion, we use the term update function to
mean the same as intervention.

2.2 Synthesis Example

Synthesizing the correct Autumn program from observed
data involves determining the object types, object instance
and latent variable definitions, and on-clauses described pre-
viously. The AutumnSynth algorithm, as an end-to-end
synthesis algorithm taking images as input, consists of four
distinct steps, each producing a new representation of the
input sequence. These steps are
1. perception, inwhich object types and instances are parsed

from the observed grid frames;
2. object tracking, which involves assigning each object in

a frame to either (1) an object in the subsequent frame,
deemed to be its transformed image in the next time, or
(2) no object, indicating that the object was removed in
the next time;

3. update function synthesis, in which Autumn expres-
sions, called update functions, describing each object-
object mapping from Step 2 are found; and

4. cause synthesis, in which Autumn events (predicates)
that cause each update function from Step 3 are sought,
and new latent state in the form of automata is constructed
upon event search failure.
We give details for these steps in Section 4, with greatest

space given to the step of cause synthesis, since that proce-
dure represents the most novel aspect of our work. First, we
provide some intuition by briefly describing how these steps
are used to synthesize the Mario program (Figure 4).

2.2.1 Perception. The object perception step first extracts
the object types and object instances from the input sequence
of grid frames. The object types are (1) a general single-cell
type with a string color parameter corresponding to the (red)
agent, (yellow) coin, and (gray) bullet objects; (2) a platform
type that is a row of three orange cells; and (3) an enemy type
that is a rectangle of six blue cells. A list of object instances is
extracted from each grid frame in the input sequence, where
an object instance describes the object’s type, position, and
any field values. For example, the object instances for the first
grid frame are a red single-celled object (agent) at position
(7, 15); three yellow single-celled objects (coins) at positions

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Ria A. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Figure 1. An observation trace from the Mario program. Black arrows indicate user keypresses and circles indicate user clicks.

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Figure 2. Sequence of grid frames from the Ice program. At times 1 and 4, the user presses down (red arrow), releasing a
blue water particle from the gray cloud. The water moves down to the lowest possible height, moving to the side (time 10) if
necessary to reach this height. The user presses down again at time 12, and then clicks anywhere (red circle) at time 15. The
click causes the sun to change color and the water to turn to ice, which stacks rather than tries to reach the lowest height. A
down press at time 19 releases another ice particle from the cloud. Finally, a click at time 24 changes the sun color back to
yellow and turns the ice back to water, which again seeks the lowest possible height.

Figure 3. A sample of Autumn programs. Clockwise from top-left: water interacting with a sink and sink plug a clone of
Space Invaders, plants growing under sunlight and water, a simplified implementation of Mario, a simplified clone of Microsoft
Paint, a weather simulation, snow falling left or right with varying wind, an alternative gravity simulation, a sand castle
susceptible to destruction by water, and ants foraging for food.

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Ria A. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Figure 4. (a) Diagram of automaton representing the numCoins latent variable synthesized for the Mario program. The start
value is zero, and the accept values (i.e. the values during which clicked causes a bullet to be added to the scene) are 1 and 2.
(b) Description of the numCoins latent variable in the Autumn language.

(4, 12), (7, 4), and (11, 6); three platform objects at positions
(4, 13), (8, 10), and (11, 7); and an enemy object at position
(6, 0).

2.2.2 Object Tracking. Next, the object tracking step de-
termines how each object in each grid frame changes to
become a new object in the next grid frame. For example, it
identifies that the agent object at position (7, 15) in the sec-
ond grid frame corresponds to the agent object at position (6,
15) in the third grid frame (i.e. it moved left). Intuitively, this
step tracks the changes undergone by every object across all
grid frames.

2.2.3 Update Function Synthesis. In the third step of up-
date function synthesis, for each mapping between an object
in one grid frame and an object in the next that is determined
in Step 2, an Autumn expression is sought that describes
that object-object mapping. For example, this step identifies
that the expression agent = moveLeft (prev agent) ac-
curately describes the change undergone by the agent object
between the first and second grid frames. Often, there are
multiple such expressions that match any givenmapping. For
example, the agent’s left movement during the first time step
might also be described by agent = moveLeftNoCollision
(prev agent) or agent = moveClosest (prev agent)
Platform, where the latter indicates movement one unit
towards the nearest object of type Platform. The update
function synthesis step collects a set of these possibilities
for each object mapping. Ultimately, one update function
is selected as the single description for each object-object
mapping during the final step of cause synthesis.

2.2.4 Cause Synthesis. Finally, the cause synthesis step
searches for an Autumn event or predicate that triggers
each update function identified in Step 3. For now, we will
assume that we have already selected a single update func-
tion that matches each object-object mapping from the set of
all possible update functions that do so; we will explain how

we perform this selection process in Section 3. To find an
Autumn event that triggers a particular update function, we
collect the set of times that the update function takes place,
and enumerate through a space of Autumn events until we
find one that evaluates to true at each of those times. For
example, say that the agent object in Mario undergoes the
update function agent = moveLeft (prev agent) at times
1, 4, and 5. If the Autumn event left, which indicates that
a left keypress has occurred, evaluates to true at those three
times, then the on-clause

on left
agent = moveLeft (prev agent)

accurately describes that particular update function’s occur-
rence. The search space of Autumn predicates is defined
over the program state, which consists of the current object
instances, latent variables, and user events. At the start of
this step in the algorithm, there are not yet any latent vari-
ables in the program state, so the possible events use only the
objects and user events (e.g. clicked, clicked agent, or
intersects bullet enemy). Lastly, this event-finding pro-
cess is complicated slightly by the fact that on-clauses may
override each other, so perfect alignment between trigger
event and observed update function is not always necessary.
This nuance will be explained in Section 4.

The interesting case in the cause synthesis step is what
happens when a matching Autumn event cannot be found
for a particular update function. In the Mario example, this
happens with the update function bullets = addObj (prev
bullets) (Bullet (Position agent.origin)), which
describes a bullet object being added to the list of objects
named bullets. Bullet addition takes place at times 32, 41,
and 57, but no event is found that evaluates to true at exactly
those times. Since the existing program state does not give
rise to any matching events, we augment the program state
by inventing a new latent variable that can be used to express
the desired predicate.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs Conference’17, July 2017, Washington, DC, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Specifically, we proceed by finding the “closest” event in
the event space that aligns with the update function. This is
the event that co-occurs with every update function occur-
rence, but may also occur during false positive times: times
when the event is true but the update function does not occur.
For bullet addition, this event is clicked, as every bullet is
added when a click takes place, but some clicks do not add a
bullet (specifically, at times 8, 9, 47, and 59). Having identified
this closest event, our goal is then to construct a latent vari-
able that acts as a finite state automaton that switches states
between the false positive times and true positive times (i.e.
the times when clicked is true and the update function oc-
curs). To be precise, the new variable takes one set of values
during the false positive times, and another set of values
during the true positive times. Calling the values taken by
the latent variable during true positive times accept values,
and those taken during the false positive times non-accept
values, the event

clicked && (latentVar in [/* accept values */])

perfectly matches the observed update function times. This
is because clicked is true during a set of false positive times,
and latentVar is in non-accept values at exactly those times,
so bullet addition does not take place, as desired. The full
Autumn definition of latentVar, including the transition
on-clauses that change its value over time, is shown in Figure
4. The variable name numCoins is substituted to note the
equivalence to a number of collected coins tracker.

The challenge in constructing this latent variable is learn-
ing the transition on-clauses that update the value of the
variable at the appropriate times. Note that these transition
on-clauses represent edges in the automaton diagrammed in
Figure 5 (hence the use of the term accept values or states).
We perform the transition learning step as part of a general
automaton search procedure, implemented via a SAT solver
as well as heuristically, to be discussed in Section 4.

3 Problem Formulation

Having provided a high-level description of the operation
of our synthesis algorithm, we now formalize the full in-
ductive synthesis problem for which our approach produces
approximate solutions.

4 The Algorithm

We now give detailed descriptions of the steps of our algo-
rithm introduced in Section 2. We focus on the latter two
steps of the algorithm—update function synthesis and cause
synthesis—referring the reader to the Appendix for full de-
tails of the object perception and tracking steps (Step 1 and
2), since they use more standard techniques and are not a
central contribution of our work.

4.1 Step 3: Update Function Synthesis

Together, the object tracking (Step 2) and update function
synthesis (Step 3) steps in the synthesis procedure answer the
question, “What does each object do at each time step?” Ob-
ject tracking first determines which objects in a grid frame
become which objects in the next grid frame, as well as
which objects were just added to or removed from the grid
frame, across the full observation sequence. Then, the update
function synthesis procedure computes an Autumn expres-
sion, the update function, that describes every object-object
mapping. This includes update functions describing object
addition and removal, which are represented as mappings
with a null or non-existent object: a null-object mapping
indicates object addition and an object-null mapping indi-
cates object removal. These update functions will eventually
become part of the on-clauses in the final output program.
To identify a matching update function, the procedure

simply enumerates through a fixed, finite space of update
function expressions, such as obj = moveLeft obj or obj
= nextLiquid obj. Some of these update function options
are simple translations, like moveLeft obj and move obj
-2 0, while others are more abstract options that describe
multiple concrete translations under different circumstances.
For example, the nextLiquid function causes an object to
move down when there is no object below it (i.e. there is no
chance of collision), and to the left or right if there is an object
below but there exists a path to a lower height in the left or
right direction. There are typically multiple update functions
in the space that describe any given object assignment, so
the procedure collects all of these possibilities.
At the end of this process, the synthesized update func-

tions may be visualized in a matrix depiction, which we call
the update function matrix (Figure 5). In the update function
matrix, the rows represent object_id’s, where objects are as-
signed the same object_id if one is transformed into the other
over time, and the columns represent times in the observa-
tion sequence (in increasing order). Each cell in the update
function matrix contains the set of possible update function
expressions corresponding to that particular object_id at that
particular time, or more precisely, those possibly undergone
by the object between the frame at that time and the frame
at the next time.

Ultimately, rather than a set of update functions for each
object_id at each time, wewant a single update function. This
is because we will eventually search for Autumn predicates
that evaluate to true at the times that each update function
takes place, to form the on-clauses of the final synthesized
program. Different choices for the single update function in
each cell in the update function matrix changes the sets of
times at which matching predicates must be true. For exam-
ple, say that the sets of possible update functions undergone
by an object in a three-grid-frame observation sequence are
{ moveLeft }, { nextLiquid, moveLeft }, and { nextLiquid,

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Conference’17, July 2017, Washington, DC, USA Ria A. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Figure 5. Update Function Synthesis. Each cell of the update function matrix contains a set of update functions that each
describes the change undergone by the object with object_id equal to the row index during a particular time step (column
index). A list of concrete update function matrices, with one update function per cell, is extracted via frequency-based heuristic.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs Conference’17, July 2017, Washington, DC, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

moveLeft }. It is possible that there exists an event that is true
at exactly the times 1, 2, and 3, which means that selecting
moveLeft in all three matrix cells gives rise to a matching
event. However, it is also possible that no event exists that
is true exactly at time 1 or exactly at times 2 and 3, so the
sequence of single update functions moveLeft, nextLiquid,
nextLiquid does not produce matching events. Though a
latent state automaton may possibly be constructed that al-
leviates this latter event search failure, automata search may
also fail. Thus, the selection of a single update function in
each cell of the update function matrix can make or break
the success of the later cause synthesis step. Further, there
might be multiple such selections that ultimately result in
the success of the full synthesis procedure, but not every pro-
duced output program will be the optimal solution described
in Section 3.
To handle this uncertainty with regard to which single

update function selection within each matrix cell will allow
matching events to be found for all update functions, we take
the following approach. Let a concrete update function matrix
be a “filtering” of the original matrix that contains just one
option in each cell from the original options. There are a
combinatorially large number of concrete matrices corre-
sponding to any given full update function matrix. We select
a small fixed set of concrete matrices from this large space
using a heuristic that selects a single update function within
a cell based on that update function’s frequency across all
rows of the matrix with the same object type. More frequent
update functions across an object type are more likely to be
selected than less frequent ones. The intuition behind this
heuristic is that selecting more frequent update functions
minimizes the number of distinct update functions within
the concrete matrix for which corresponding events must
be found. This can be viewed as trying to ”maximally share”
update functions across the cells of the matrix, resulting in
an overall output program with fewer on-clauses if the cause
synthesis step succeeds. This procedure is summarized in
Figure 5; full details are given in the Appendix.

4.2 Step 4: Cause Synthesis

By this stage in the synthesis process, the object types, the
object instance definitions, and the possible update functions
undergone by each object at every time have been identified.
Remaining to be synthesized are the event predicates associ-
ated with the update functions in on-clauses, and potentially
latent variables that are necessary for the appropriate events
to exist. At a high level, this step proceeds by enumerating
through each concrete update function matrix in the list
identified in the previous step, and searching for events and
latent state that explain each distinct update function. If this
process succeeds for a given concrete matrix, the overall
algorithm terminates, returning the final program. If this
process fails on the current concrete matrix, it is repeated on
the next concrete matrix in the list until success or until the

end of the list is reached, which indicates overall synthesis
failure.

To synthesize events, we first define a finite set of Autumn
predicates, which roughly embodies a prior about what types
of events are likely to be triggers of changes in the grid world.
We call these predicates atomic events, because we ultimately
enumerate both through the events themselves as well as
conjunctions and disjunctions of those atoms when searching
for a matching event. The atomic event set includes global
events, including user events like clicked, clicked obj1,
and left as well as object contact events like intersects
obj1 obj2 and adjacent obj1 obj2, among other forms.
These stand in contrast to the other type of event in the
atomic event set, called an object-specific event, which takes
different values for distinct object_id’s in addition to distinct
times. These events are effectively implemented as functions
in a filter operation; for example, the event obj.color ==
“red” is true for an object if the object is contained in the
filtered list

filter (obj -> (obj.color == “red”)) objects,

where objects denotes the set of all objects at the current
time. We note that while the evaluation of a global event over
time consists of a single vector of true/false values (one per
time), the full evaluation of an object-specific event consists
of a set of such vectors, one per distinct object_id.
Next, we describe the set of update functions for which

we must find associated events in a given concrete update
function matrix. In our setting, we make the assumption that
objects that belong to the same object type are all controlled
by the same set of on-clauses. This means that if two objects
both undergo the update moveLeft and the objects have the
same object type, then a single event (on-clause) caused both
of them to undergo the update. In contrast, if two objects
undergo moveLeft and belong to different object types, we
must synthesize a different event associated with each one,
since a different on-clause caused each object type’s update.
Thus, we synthesize events by enumerating through the
object types, and finding an event for each distinct update
function that appears across objects of that type.
Lastly, for each update function under consideration, we

construct what is called an update function trajectory, which
is a set of vectors 𝑣 ∈ {−1, 0, 1}𝑇 that describes the times
when the update function took place versus did not take
place (𝑇 is the length of the observation sequence). There
is one vector for each object_id with the object type under
consideration. Each vector position is 1 if the update function
took place at that time for that object_id, 0 if it did not take
place, and −1 if it may have taken place but could have been
overridden by another update function. This third scenario
is interesting, and arises because we structure synthesized
Autumn programs so on-clauses with update functions that
are more frequent in the observed sequence are ordered
before on-clauses with less frequent update functions. Thus,

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Conference’17, July 2017, Washington, DC, USA Ria A. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

those later on-clauses will always override the earlier ones.
With respect to event search, an event is a match for an
update function if it is true for every time and object_id for
which the update function trajectory vector is 1, and false
whenever it is 0. The event may be either true or false when
the update function trajectory value is −1.
Notably, if the number of unique vectors in an update

function trajectory is 1, then the matching event may be a
global event, because there is no variance based on object-
specific features. Otherwise, if there is more than one unique
vector in the trajectory, then the matching event must be an
object-specific event, since the evaluated vector depends on
the particular object_id. It is possible that a matching event
may not be found in either of these cases, which signals that
we must enrich the program state with new elements that
were not used in the original event space. For simplicity,
in the rest of the section, we focus only on the case where
the unmatched update function trajectory contains a single
unique vector. This setting is called global latent state synthe-
sis; the alternative setting, called object-specific latent state
synthesis, is a straightforward extension.

4.3 Step 4b: Automata Synthesis

The input to the automata synthesis step is a set of update
function trajectories, one for each unmatched update func-
tion from the previous step. Each update function trajectory
is a single vector 𝑣 ∈ {−1, 0, 1}𝑇 . The goal of the automata
synthesis procedure is to construct the simplest latent state
automaton that enables us to write latent-state-based event
predicates matching each 𝑣 . For ease of exposition, we will
begin by describing the automata synthesis procedure for
the scenario in which there is exactly one unmatched update
function for which a latent-stated-based predicate must be
constructed. We will then describe the extension to the more
general scenario of multiple unmatched update functions.

To start, we frame our overall problem with respect to the
classic formulation of automata synthesis given input-output
examples. Classically, the problem of inductive automata syn-
thesis is to determine the minimum-state automaton that
accepts a given set of accepted input strings (positive exam-
ples) and rejects a given set of rejected input strings (nega-
tive examples). In our scenario, these positive and negative
input “strings” may be determined from the sequence of pro-
gram states (one per time) corresponding to the observation
sequence. In particular, we consider the set of prefixes (sub-
arrays starting from the first position) of the program state
sequence that have, as their last element, a program state
where the optimal co-occurring event is true. The optimal
co-occurring event is defined to be the event that co-occurs
with the update function in question, and has the minimum
number of false positive times, i.e. times when the event is
true but the update function does not occur. In the Mario ex-
ample, this co-occurring event is clicked. We then partition
the set of program state sequence prefixes into those that

Figure 6. Bird’s-eye view of the automata synthesis problem,
using the example of the Mario program. The bullet addition
update function, indicated by addObj, does not have a matching
trigger event. The closest event is clicked, which co-occurs
with bullet addition but also is true at false positive times. We
seek a latent variable that is true at one set of times (accept
values) and false at another set of times (reject values), so that
the conjunction of clicked and that latent variable perfectly
matches addObj’s times. As shown in the solution, this latent
variable initially has value zero, and changes to one then two
on agent-coin intersection, and changes back down on clicks.

end with a program state in which the update function took
place and those in which it did not take place. The former
set is the set of positive examples and the latter is the set of
negative examples in our automata synthesis problem.

This definition of positive and negative input strings may
be understood by considering the fact that, if there existed
a latent state automaton that fit this specification, then the
event

co_occurring_event && (latent_var in [/*
accepting state labels */])

would be a perfect match for the update function. This is
because the co-occurring event is true during a set of false
positive times with respect to the update function trajectory,
and the latent automaton is in rejecting states at exactly

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs Conference’17, July 2017, Washington, DC, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Figure 7. Three variant methods for automata synthesis, shown for Gravity I. The blue blocks move left, right, up, or down
depending on the button last clicked. The transition label left abbreviates (clicked leftButton), etc. See note in Sec. 4.3.2.

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Conference’17, July 2017, Washington, DC, USA Ria A. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

those times (since those times correspond to the rejected
program state prefixes). Thus, finding such an automaton
would meanwewould have an event that matches the update
function under consideration.

Having discussed this simpler setting in which there is just
one unmatched update function in need of latent state, we
now return to the full problem setting, in which there may
be multiple unmatched update functions. In this scenario,
each unmatched update function specifies its own inductive
automata synthesis problem—a set of positive and negative
input strings—that if solvedwill give rise to amatching latent-
state-based predicate. One solution to this “multi-automata”
synthesis problem is to construct a distinct latent automa-
ton (variable) that satisfies each update function. However,
a smaller number of latent variables is often sufficient to
explain all the update functions. In fact, the product of all the
individual update function automata is a single automaton
that satisfies all specifications, up to changing the accept
states for each update function. However, taking the prod-
uct of the smallest automata satisfying individual update
functions does not necessarily produce the smallest product
automaton: It is possible that larger component automata
will multiply to form this minimal product instead. Thus,
optimizing each individual update function’s automaton and
multiplying is not a sufficient solution.

We now discuss three distinct algorithms for solving this
inductive automata synthesis problem: Full Sketch, Divide-
and-Conquer Sketch, and Heuristic. We note that at the cur-
rent stage of this ongoing work, we synthesize a single latent
state automaton that satisfies all unmatched update functions
within each object type, as opposed to a single automaton for
the entire program (i.e. across all object types). The reasonwe
do not try to find one program-level automaton is because the
human-written Autumn programs in our benchmark suite
use a different latent variable for each type—a choice that
appears to make the programs more human-understandable
than having one large product—and these sets of type-level
latent automata are also often more concisely expressed in
the Autumn language than a single product. We will for-
malize this approach with respect to the overall synthesis
objective of identifying the minimal Autumn program satis-
fying the observations in the final version of this work.

4.3.1 Algorithm 1: Full Sketch. In the Full Sketch ap-
proach, the complete multi-automata synthesis problem (for
each object type) is encoded as a Sketch problem. In other
words, Sketch is tasked with identifying the minimal au-
tomaton that accepts each update function’s language, as
specified by the observed examples, up to changing just the
accept states. As an example, consider the Autumn program
named Gravity I shown in Figure 6. The blue blocks contin-
uously move left, right, up, or down depending on which
of the four colored buttons was last pressed. A matching
event cannot be found for any of the four update functions

moveLeft, moveRight, moveUp, or moveDown, so their update
function trajectories are fed to the Sketch solver to produce
the 4-state automaton shown in Figure 6a. This new latent
variable then allows a matching predicate to be written for
each of the four update functions: true && latentVar == 1,
true && latentVar == 2, true && latentVar == 3, and
true && latentVar == 4, where the optimal co-occurring
event is true.

4.3.2 Algorithm2:Divide-And-Conquer Sketch. Rath-
er than attacking the full multi-automata synthesis problem,
Divide-And-Conquer Sketch tasks Sketch with solving each
update function’s automata synthesis problem individually,
and then combines those solutions together via product. The
intuition behind this approach is that synthesizing an au-
tomaton matching all update functions at once may face
scalability challenges, but finding an automaton matching a
single update function, which is likely smaller, may be easier.
As described previously, the smallest automaton satisfying a
single update function may not give to rise to the smallest
product, so the Divide-and-Conquer algorithm identifies a
small set of automata matching each update function instead.
It then takes the product over all update functions’ automata
sets, and computes the minimal automaton from that product
space. We illustrate this algorithm again with the Gravity I
example (Figure 6b). The algorithm first identifies a set of
automata that solve the automata synthesis problems corre-
sponding to the four unmatched update functions. Note that
each of these automata have just two states instead of the
full 4-state solution found in the Full SAT approach. Next,
it computes all automata products over these four automata
sets, and takes the minimal automaton from this product set,
which is the 4-state solution seen previously.

(A note about Figure 6b: For reasons of tractability, we
employ a simple heuristic to downsize each individual update
function’s automata set before taking the product across all
automata sets. At a high level, this heuristic identifies subsets
of the full automata set that are observationally equivalent
with respect to the given input observation sequence, and
keeps just one automaton from each of these equivalence
classes. This step is not shown in the figure. We will give a
more detailed explanation of this procedure and definition of
observational equivalence in the final version of this paper.)

4.3.3 Algorithm 3: Heuristic. Despite the simplicity of
the Sketch-based formulations of automata synthesis, their
scalability to problem settings with large automata is un-
clear, due to known limitations of SAT solvers. As such, we
also implemented a heuristic algorithm that synthesizes an
automaton satisfying a set of update function trajectories via
a series of greedy updates to an initial automaton (Figure 6c).
At a high level, this approach begins with an automaton with
a small number of states, and repeatedly splits states into
two based on a heuristic related to the search for transition
events. More precisely, the algorithm begins by searching for

12

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs Conference’17, July 2017, Washington, DC, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

transition events (edges) that result in an automaton that pro-
duces a particular initial state sequence that has few distinct
states. If transition search fails, one of the original states is
split into two, and transition search is repeated. This process
continues until a satisfying automaton is identified.

5 Preliminary Evaluation

5.1 The Autumn Benchmark Dataset

To evaluate our algorithm, we manually constructed a set
of 31 Autumn programs, designed to collectively embody
a rich variety of 2D causal mechanisms. These benchmark
programs are described in Table 1 (Figure 8). Seven of the
models do not contain latent state, and hence test only the
functional component of our synthesis procedure, while the
remaining 24 models contain latent state, thus also testing
the automata synthesis component.

As our evaluation remains ongoing, for our preliminary re-
sults, wemanually constructed an input user action sequence
for each benchmark program, and ran the three synthesis
algorithms—Full SAT, Divide-and-Conquer SAT, and Heuris-
tic—on these sequences.We declared a success for a synthesis
algorithm if it produced an output program that matches the
observation sequence, though it need not be perfectly equiv-
alent to the ground-truth program. Both of these aspects
will be updated in our final evaluation, in which we plan to
measure the success of our synthesis algorithms on input
sequences generated by several human subjects interacting
with the models, and define success to be the output program
being semantically equivalent to the ground-truth program.

The results of this evaluation are shown in Table 2 (Figure
9) and Figures 10 and 11. While these results are subject to
change as we continue to finalize our work, it appears that
the Heuristic algorithm is currently most effective: It solves
all but four of the benchmarks, and does so in less time than
either of the other two algorithms, though the runtime is
very similar to Full Sketch’s runtime on many models. The
Divide-and-Conquer Sketch algorithm is notably slower than
both the Heuristic and Full Sketch algorithms on almost all
of the models that all three methods solve. Further, while the
vast majority of the programs synthesized by the Heuristic
and Full Sketch algorithms either exactly or almost exactly
match the ground-truth programs, many of the programs
synthesized by the Divide-and-Conquer method do not gen-
eralize as accurately. This is a result of the fact that we do
not enumerate the entire space of automata matching each
individual update function before taking the product. We
instead just enumerate a small, finite subset, so the computed
product is often not optimal.

The most interesting two results in our evaluation are the
following: (1) For four of the benchmark programs—Gravity
III, Count III, Count IV, and Double II—both Sketch-based
algorithms timed out after 24 hours without producing a so-
lution, while the Heuristic algorithm solved all those models

in minutes to hours: 2.3, 6.9, 118.3, and 17.3 minutes, respec-
tively. The poor performance of the Full Sketch method on
these models is due to the fact that the models’ latent state
automata are large (e.g. nine states and 24 edges for Gravity
III), so the underlying SAT solver does not terminate. Divide-
and-Conquer Sketch fails for the same reason, because while
individual-update-function-level automata are often smaller
than the overall automaton, in these models, each individ-
ual automaton is actually the same as the full automaton.
Hence, Sketch again does not terminate in the Divide-and-
Conquer framing. (2) For one benchmark program, Swap,
the Full Sketch approach timed out after 24 hours, but the
Divide-and-Conquer Sketch algorithm actually managed to
find a solution in 21.4 minutes. (The Heuristic algorithm also
solves this model, in 2.3 minutes.) The reason for this unusual
result is that the Swap model has a latent state automaton
with eight states and 64 edges, too large for the Full Sketch
algorithm to handle, but which is the product of eight two-
or three-state automata corresponding to the eight distinct
update functions in the program. Sketch can more easily
identify a two- or three-state automaton satisfying a speci-
fication, so the Divide-and-Conquer Sketch algorithm does
this eight times and hence terminates successfully.

We also comment on the benchmark programs that none
of our algorithms were able to synthesize. For these models,
many of the fixes are lower-level modifications to the overall
algorithm. For example, for the Grow II and Egg programs,
an event predicate needed to express the program is actu-
ally just missing from the atomic event space we use for
search, so it should be added to the space. Another limita-
tion is that sometimes the optimal co-occurring event com-
puted for a particular latent-state-based update function is
incorrect, causing synthesis to fail. However, the second-best
co-occurring event—that with the second smallest number
of false positives rather than the smallest—may be correct,
or the third-best, etc. This general kind of failure can be
reduced by implementing a form of “multiplicity handling”
with respect to co-occurring events, where instead of try-
ing only the best event and terminating if it causes the rest
of synthesis to fail, we try the top-k best events until one
hopefully succeeds. These kinds of updates to our current
algorithm are ongoing.

Finally, we emphasize that our benchmark results are still
preliminary and are subject to change as we continue to
modify both the Heuristic and the Sketch-based algorithms,
including with the generalizations described above. Some
of these modifications will affect all three algorithms’ run-
times, like the previously described “multiplicity handling”
generalization, while others will affect individual algorithms’
runtimes. For example, optimizations to the Sketch imple-
mentations could decrease the Sketch-based algorithms’ run-
times, while improvements that make the Heuristic algo-
rithm less brittle/more general would increase the Heuristic
algorithm’s runtimes. More precisely, while the Heuristic

13

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Conference’17, July 2017, Washington, DC, USA Ria A. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

algorithm works well on the current benchmark suite, the
nature of it being a heuristic means that there are certainly
classes of models on which it will fail, which we can patch
somewhat with more intricate algorithms. These kinds of
changes are likely necessary for the method to generalize
both to other Autumn programs we may add to the bench-
mark suite, as well as externally-sourced programs like those
discussed in Section 5.2. In addition, further thinking about
our evaluation design, including potentially running the
Sketch solver with a few different parameter options to fend
against blowup, to ensure the fairest possible comparison
between the three algorithms also remains part of future
work. These modifications may result in different relative
runtimes across the variant algorithms than we currently
observe (e.g. potentially lower Sketch runtimes and higher
Heuristic runtimes on some benchmarks). In our final evalu-
ation, we will also average the runtimes over more trials; our
current results are averaged over 2-4 runs, where the smaller
benchmarks were run more times and the larger benchmarks
run fewer times.

5.2 Generalization Beyond Autumn Programs

To further assess the generality of our techniques, we plan
to run the three synthesis variants on a benchmark dataset
that we did not ourselves construct. Using just the Autumn
benchmark suite is akin to evaluating on only the “training

set” for our algorithm, as AutumnSynth was designed with
knowledge of these particular programs in mind. In particu-
lar, we will evaluate on the suite of Atari-style games created
by Tsividis et. al. (http://pedrotsividis.com/tbrl.html). These
games were written in the PyVGDL language for describ-
ing grid-world-based video games, and exhibit a number
of differences from Autumn programs. These differences
include that all the games run on 330 pixels by 900 pixel
grids while most Autumn programs run on 16 by 16 grids.
As a proof-of-concept that our method can synthesize these
externally-sourced benchmark programs, we ran a version
of the Heuristic algorithm with minor modifications on an
observation sequence from the Tsividis et. al. corpus’s Aliens
program, shown in Figure 12. The algorithm succeeded, pro-
ducing an output program with two object-specific latent
automata describing objects moving at different speeds. We
are currently generalizing lower-level details of our imple-
mentation so as to incorporate the modifications necessary
for synthesizing this different flavor of models. Successfully
synthesizing a large portion of this external benchmark will
concretize the generality of our approach, and we are excited
about pursuing this line.

14

http://pedrotsividis.com/tbrl.html

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs Conference’17, July 2017, Washington, DC, USA

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

Figure 8. Descriptions of the 31 benchmark programs.

15

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

Conference’17, July 2017, Washington, DC, USA Ria A. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

Figure 9. Table of input/output lengths and algorithm runtimes on each of the benchmark programs. A bottom symbol
indicates timeout after 24 hours. An X symbol indicates that the benchmark’s solution was outside the support of the synthesis
algorithms (described in more detail in Section 5.1) and thus we did not time the algorithms on these benchmarks. We will add
these evaluations in the final version of the paper, when we have added the generalizations that alleviate these limitations.
Finally, the N/A’s for the Sketch and D&C Sketch runtimes on the first seven benchmarks are there because those models
do not possess latent state, while the three algorithms vary only in their latent automata synthesis procedures. Since we
wanted to highlight the runtime differences arising from core automata synthesis differences instead of lower-level algorithmic
choices needed to support them (which would be more prominent in models without latent state), we have only evaluated the
Heuristic algorithm on these non-latent-state based models for our first evaluation.

16

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs Conference’17, July 2017, Washington, DC, USA

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

Figure 10. Runtimes for the variant AutumnSynth algorithms on each of the benchmark programs solved by at least one
algorithm. Note that the first 7 benchmarks (left of the dashed line; Particles, Ants, Chase, Magnets, Invaders, Sokoban, and
Ice) all do not contain latent state, so we currently evaluate only one of the algorithms (Heuristic) on them (see Figure 9
caption for further explanation). We also note that we ran the models with a timeout of 24 hours, so the runtimes that exceed
the size of the plot did not finish before then, and that synthesis success is defined as producing a program that matches
the observations—not necessarily being semantically equivalent to the ground-truth program. Finally, we note that while
these results provide a snapshot of the current state of our project, they are subject to change as we continue to develop our
variant algorithms. In particular, yet-to-be-implemented generalizations of the Heuristic method and optimizations to the
Sketch-based algorithms could lead to different relative runtimes across the three algorithms (e.g. lower Sketch runtimes and
higher Heuristic runtimes) for some benchmarks. See Section 5.1 for a more detailed discussion.

17

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

Conference’17, July 2017, Washington, DC, USA Ria A. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

Figure 11. Sample latent state automata synthesized by AutumnSynth. (a) Paint model. Each state corresponds to a different
color, indicating the color of the block added when a user clicks on an empty grid square. Pressing up cycles through the
colors. (b) Gravity III model. Each state corresponds to one of the nine directions of motion formed by crossing three possible
x-directions (-1, 0, 1) with y-directions (-1, 0, 1). (c) Water Plug model. Clicking one of three colored buttons changes the
color of the block added when a user clicks an empty grid cell to the color of the button. (d) Wind model. Snow particles
fall downward, left-diagonally, and right-diagonally, depending on the wind state that changes with left/right arrow keys.
(e) Count IV model. Instead of giving the Autumn language description for this automaton, we show the on-clauses for the
update functions that depend on the latent variable instead. Here, a particle moves left if the total number of left presses is
greater than the total number of right presses up to a maximum difference of 4. It moves right according to a similar rule, and
is stationary in state zero.

18

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs Conference’17, July 2017, Washington, DC, USA

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

Figure 12. The Aliens program from the Tsividis et. al. corpus. Pressing arrow keys moves the blue agent left and right, and
clicking causes it to shoot a pink bullet upward, as long as there are no other pink bullets already in the frame. Gold enemies
are regularly created at the top-left corner, and move right once every three time steps. The enemies randomly shoot red
bullets, which move down every two time steps. Pink bullets kill enemies, red bullets kill the agent, and both bullets destroy
the gray shield blocks. The latent variables are the enemy and pink bullet speeds: the bullets do not move in sync but rather
every two or three time steps from the time of their creation, so object-specific latent fields are used to track when they move.

19

	Abstract
	1 Introduction
	2 Overview
	2.1 The Autumn Language
	2.2 Synthesis Example

	3 Problem Formulation
	4 The Algorithm
	4.1 Step 3: Update Function Synthesis
	4.2 Step 4: Cause Synthesis
	4.3 Step 4b: Automata Synthesis

	5 Preliminary Evaluation
	5.1 The Autumn Benchmark Dataset
	5.2 Generalization Beyond Autumn Programs

