
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Combining Functional and Automata Synthesis to

Discover Causal Reactive Programs

Ria A. Das
MIT

Joshua B. Tenenbaum
MIT

Armando Solar-Lezama
MIT

Zenna Tavares
Columbia University

Abstract

Note: This is a working document for an ongoing project. The
discussed results represent the current stage of the work, and
are subject to change as we continue to develop the methods.
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1 Introduction

In the last decade, the traditional view of program synthe-
sis as a technique for automating programming tasks has
expanded with the growth of the following hypothesis: Pro-
grams, with their unique ability to compactly and inter-
pretably represent a wide variety of structured knowledge,
may also be an important model representation in artificial
intelligence (AI) systems. Recent work has demonstrated the
potential of using programs as a modeling mechanism in a
number of domains, such as learning rule-based programs
describing biological data and synthesizing computer-aided
design (CAD) programs from 3D drawings.

Much of this work at the intersection of program synthesis
and AI can be framed as addressing the challenge of theory
induction: Given an observation, what is the underlying the-
ory or model that generates or explains that observation?
We use theory to mean not just formal scientific theories, but
also everyday cognitive explanations that humans derive on
the fly to explain new observations. For example, a child who
has figured out how a new toy works after a few minutes
of play has come up with a theory of the toy’s mechanism.
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While there are many possibilities for the choice of theory
representation in AI systems, programs offer the benefits
that they can often be synthesized from small data (sample-
efficiency) and that their concise, modular form often gives
them strong generalization properties. These features have
made program synthesis especially popular in cognitive AI
as a route to building artificial agents that learn theories
from observation as effectively as humans.
Despite the promise of formulating theory induction as

program synthesis, existing methods of program synthesis
are not yet suited to capture the richness of the space of
theories that humans can learn from data, be it scientific or
casual. One critical limitation is that many real world phe-
nomena are reactive, time-varying systems, which update in
reaction to new inputs at every time. However, current meth-
ods of inductive program synthesis—synthesizing programs
from input-output examples—cannot synthesize non-trivial
reactive models. This is because synthesizing time-varying
latent state, the key step in learning any interesting reactive
model, is a fundamental problem that standard inductive
program synthesis techniques were not designed to handle.

Specifically, most existing inductive program synthesis ap-
proaches are purely functional, meaning that both the inputs
and outputs are fully observed, and the task is to construct a
function taking one to the other. In other words, there are no
concerns about identifying latent state, as the inputs and out-
puts are fully known. In a few other cases, inductive synthesis
has also been applied to tackle the setting of unsupervised
learning, in which hidden (latent) state representations are
learned from partially observed inputs. However, neither of
these method classes attempt to solve the full latent state
learning problem that underlies the reactive setting. There,
not only what the latent state representation is for every
input (time point) must be learned, as is the case in unsu-
pervised learning, but also how that latent state evolves over
time must be identified, in the form of programmatic rules.

For concreteness, we consider the simple yet rich domain
of Atari-style, time-varying 2D grid worlds (Figures 1, 2, and
3), which demonstrates these shortcomings of inductive pro-
gram synthesis. This particular domain is of great interest in
the AI and cognitive science communities, drawing its rele-
vance from the fact that humans are able to learn causal theo-
ries—full explanations of which stimuli cause which changes
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in the environment—of grid worlds incredibly quickly, a feat
yet to be replicated by AI.
In the Mario-style game in this domain that is shown in

Figure 1, an agent (red) moves aroundwith arrow key presses
and can collect coins (yellow). If the agent has collected a
positive number of coins, when the human player clicks,
a bullet (gray) is released upwards from the agent’s posi-
tion, and the agent’s coin count is decremented. Otherwise,
clicking does nothing. Notably, the number of coins that the
agent possesses is not displayed anywhere on the grid at
any time, so the only way to write a program that models
this behavior is to define an unobserved or latent variable,
which tracks the number of coins (bullets) possessed by the
agent. In other words, there is no way to express why bullet
addition takes place using just the current visible state of
the program: the objects (with their locations and shapes)
and current user action (click, key press, or none). Instead,
we must define an invisible variable that can distinguish be-
tween two grid frames that are visually equivalent, but in
which the agent has collected different numbers of coins
(zero vs. some). Synthesizing this latent variable involves
both identifying the variable’s initial value, as well as learn-
ing functions that dictate when (on what stimulus) and how
(increment, decrement, etc.) that value will change. Crucially,
learning this dynamical latent state-based program from ob-
servations alone (a sequence of grid frames and user actions)
is not feasible with standard techniques.
To address this gap between current inductive program

synthesis approaches and the reactive setting, we develop a
novel program synthesis algorithm that unites two largely
orthogonal communities within programming languages:
the functional synthesis and automata synthesis communities.
Specifically, we show that we can inductively synthesize re-
active programs by splitting synthesis into two procedures,
a functional synthesis procedure and an automata synthesis
procedure. The functional synthesis step attempts to synthe-
size the parts of the program that do not depend on latent
state. If functional synthesis fails to synthesize a program
component explaining an observation, the automata synthe-
sis procedure is called. The automata synthesis procedure is
so named because the time-varying latent state in a reactive
system can be viewed as a finite state automaton, where the
labels on the automaton transitions are predicates in the
underlying domain-specific language (DSL) used for synthe-
sis (Figure 4). At a high level, based on the specifics of how
the functional synthesis step failed, the automata synthesis
procedure enriches the original program state with particular
new latent structure (e.g. a time-varying latent variable like
number of coins) that then allows that functional step to
succeed.
By combining functional and automata synthesis tech-

niques, our approach expands the horizon of synthesis prob-
lems that can be solved by either method alone. In particular,
while the functional synthesis community has demonstrated

impressive performance at synthesizing complex functional
transformations from input-output data, the applicability
of their techniques is limited by the fact that they cannot
synthesize state-based models, including reactive systems,
which are plentiful in the real world. On the other hand, the
automata synthesis community has seen great success at
synthesizing finite-state automata or transition systems from
traces, but their methods do not scale to domains with intri-
cate functional data transformations or very large numbers
of states (which are often more compactly represented using
program abstractions).

We suspect that this concept of integrating functional and
automata synthesis is valuable to a wide breadth of syn-
thesis domains. In this paper, we demonstrate its value by
instantiating it in the particular domain of 2D Atari-style
grid-worlds. We develop a DSL called Autumn (from au-
tomaton) that is designed to concisely express a variety of
causal dynamics within these grids. The inductive synthesis
problem addressed by our algorithm is: given a sequence of
observed grid frames and corresponding user actions (clicks
and keypresses), to synthesize the program in the Autumn
language that generates the observations. Since Autumn pro-
grams encode causal dynamics, this synthesis problem is one
of causal theory induction, and is important in both cognitive
science and AI. These fields aspire to the goal of develop-
ing an artificial agent that can learn causal theories as well
as humans can, for which our hybrid functional-automata
synthesis approach offers a potential route.

Our synthesis algorithm, named AutumnSynth, has three
variant implementations, each differing in the algorithm used
to perform automata synthesis from observed data. Two of
these algorithms rely on the Sketch system to discover a
minimal latent state automaton from examples, while the
third algorithm is a heuristic that greedily searches through
the space of automata. We construct a benchmark suite of 31
Autumn programs designed to express the diversity of time-
varying causal models that may be manifested in 2D grids,
and evaluate our algorithm implementations on this bench-
mark. Though subject to change as the work progresses,
in our preliminary results, we find that our heuristic algo-
rithm outperforms both Sketch implementations in both
accuracy—it solves the majority of the benchmarks—and run-
time—taking seconds to a few hours—especially on bench-
marks with large automata, signaling the promise of our
formulation. In sum, we make the following contributions:
(1) a novel inductive program synthesis algorithm that

learns causal reactive programs from observation data
(AutumnSynth);

(2) a guiding example of how to design synthesis algo-
rithms that integrate functional and automata synthe-
sis, enabling synthesis of programs beyond the scope
of either alone; and

(3) a benchmark dataset of Autumn programs to spur the
development of further algorithms in this space.

2
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2 Overview

In this section, we briefly describe the Autumn language
and AutumnSynth algorithm, and walk through a concrete
execution of the algorithm on the Mario program described
in the introduction.

2.1 The Autumn Language

Autumn was designed to concisely express a rich variety
of causal mechanisms in interactive 2D grid worlds (Figure
2). These mechanisms range from distillations of real-world,
everyday causal phenomena, such as water interacting with
a sink, plants growing upon exposure to sunlight, or an
egg breaking upon being dropped, to video game-inspired
domains such as Atari’s Space Invaders. The language is
functional reactive — it augments the standard functional lan-
guage definition with primitive support for temporal events.

Every Autumn program is composed of four parts (Figure
3). The first part defines the grid dimensions and background
color. The second part defines object types, which are simply
structs which define an object shape, or a list of 2D positions
each associated with a color, as well as a set of internal fields,
which store additional information about the object (e.g. a
Boolean healthy field may store an indicator of the object’s
health). The third part defines object instances, which are con-
crete instantiations of the object types defined previously,
as well as latent variables, which are values with type int,
string, or bool. Object instances and latent variables are
defined using a primitive Autumn language construct called
initnext, which defines a stream of values over time via the
syntax var = init expr1 next expr2. The initial value
of the variable (expr1) is set with init, and the value at
later time steps is defined using next. The next expression
(expr2) is re-evaluated at each subsequent time step to pro-
duce the new value of the variable at that time. Further, the
previous value of a variable may be accessed using the prim-
itive prev, e.g. prev var. The next expression frequently
utilizes the prev primitive to express dependence on the past.
For example, the definition of the agent object in the Mario
program from the introduction is agent = init (Agent
(Position 7 15)) next (moveDownNoCollision (prev
agent)), indicating that later values of the agent should
move down one unit from the previous value whenever that
is possible without collision.

Finally, the fourth segment of an Autumn program
defines what we call on-clauses, which are expressed via the
high-level form

on event
intervention,

where event is a predicate and intervention is a variable
update of the form var = expr, or multiple such updates. As
suggested by the name intervention, an on-clause represents

an override of the default modification to a variable that is
defined in the next clause. In particular, when the event
predicate evaluates to true, the new value of the variable var
at that specific time is computed by evaluating the associ-
ated intervention instead of the standard next expression.
Each on-clause may contain multiple update statements for
different variables, and a single program may contain mul-
tiple on-clauses. In the latter scenario, the on-clauses are
evaluated sequentially, with the effect that later on-clauses
may update a variable in a way that composes with updates
from earlier on-clauses, or completely overrides it. In the
rest of the discussion, we use the term update function to
mean the same as intervention.

2.2 Synthesis Example

Synthesizing the correct Autumn program from observed
data involves determining the object types, object instance
and latent variable definitions, and on-clauses described pre-
viously. The AutumnSynth algorithm, as an end-to-end
synthesis algorithm taking images as input, consists of four
distinct steps, each producing a new representation of the
input sequence. These steps are
1. perception, inwhich object types and instances are parsed

from the observed grid frames;
2. object tracking, which involves assigning each object in

a frame to either (1) an object in the subsequent frame,
deemed to be its transformed image in the next time, or
(2) no object, indicating that the object was removed in
the next time;

3. update function synthesis, in which Autumn expres-
sions, called update functions, describing each object-
object mapping from Step 2 are found; and

4. cause synthesis, in which Autumn events (predicates)
that cause each update function from Step 3 are sought,
and new latent state in the form of automata is constructed
upon event search failure.
We give details for these steps in Section 4, with greatest

space given to the step of cause synthesis, since that proce-
dure represents the most novel aspect of our work. First, we
provide some intuition by briefly describing how these steps
are used to synthesize the Mario program (Figure 4).

2.2.1 Perception. The object perception step first extracts
the object types and object instances from the input sequence
of grid frames. The object types are (1) a general single-cell
type with a string color parameter corresponding to the (red)
agent, (yellow) coin, and (gray) bullet objects; (2) a platform
type that is a row of three orange cells; and (3) an enemy type
that is a rectangle of six blue cells. A list of object instances is
extracted from each grid frame in the input sequence, where
an object instance describes the object’s type, position, and
any field values. For example, the object instances for the first
grid frame are a red single-celled object (agent) at position
(7, 15); three yellow single-celled objects (coins) at positions

3
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Figure 1. An observation trace from the Mario program. Black arrows indicate user keypresses and circles indicate user clicks.
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Figure 2. Sequence of grid frames from the Ice program. At times 1 and 4, the user presses down (red arrow), releasing a
blue water particle from the gray cloud. The water moves down to the lowest possible height, moving to the side (time 10) if
necessary to reach this height. The user presses down again at time 12, and then clicks anywhere (red circle) at time 15. The
click causes the sun to change color and the water to turn to ice, which stacks rather than tries to reach the lowest height. A
down press at time 19 releases another ice particle from the cloud. Finally, a click at time 24 changes the sun color back to
yellow and turns the ice back to water, which again seeks the lowest possible height.

Figure 3. A sample of Autumn programs. Clockwise from top-left: water interacting with a sink and sink plug a clone of
Space Invaders, plants growing under sunlight and water, a simplified implementation of Mario, a simplified clone of Microsoft
Paint, a weather simulation, snow falling left or right with varying wind, an alternative gravity simulation, a sand castle
susceptible to destruction by water, and ants foraging for food.
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Figure 4. (a) Diagram of automaton representing the numCoins latent variable synthesized for the Mario program. The start
value is zero, and the accept values (i.e. the values during which clicked causes a bullet to be added to the scene) are 1 and 2.
(b) Description of the numCoins latent variable in the Autumn language.

(4, 12), (7, 4), and (11, 6); three platform objects at positions
(4, 13), (8, 10), and (11, 7); and an enemy object at position
(6, 0).

2.2.2 Object Tracking. Next, the object tracking step de-
termines how each object in each grid frame changes to
become a new object in the next grid frame. For example, it
identifies that the agent object at position (7, 15) in the sec-
ond grid frame corresponds to the agent object at position (6,
15) in the third grid frame (i.e. it moved left). Intuitively, this
step tracks the changes undergone by every object across all
grid frames.

2.2.3 Update Function Synthesis. In the third step of up-
date function synthesis, for each mapping between an object
in one grid frame and an object in the next that is determined
in Step 2, an Autumn expression is sought that describes
that object-object mapping. For example, this step identifies
that the expression agent = moveLeft (prev agent) ac-
curately describes the change undergone by the agent object
between the first and second grid frames. Often, there are
multiple such expressions that match any givenmapping. For
example, the agent’s left movement during the first time step
might also be described by agent = moveLeftNoCollision
(prev agent) or agent = moveClosest (prev agent)
Platform, where the latter indicates movement one unit
towards the nearest object of type Platform. The update
function synthesis step collects a set of these possibilities
for each object mapping. Ultimately, one update function
is selected as the single description for each object-object
mapping during the final step of cause synthesis.

2.2.4 Cause Synthesis. Finally, the cause synthesis step
searches for an Autumn event or predicate that triggers
each update function identified in Step 3. For now, we will
assume that we have already selected a single update func-
tion that matches each object-object mapping from the set of
all possible update functions that do so; we will explain how

we perform this selection process in Section 3. To find an
Autumn event that triggers a particular update function, we
collect the set of times that the update function takes place,
and enumerate through a space of Autumn events until we
find one that evaluates to true at each of those times. For
example, say that the agent object in Mario undergoes the
update function agent = moveLeft (prev agent) at times
1, 4, and 5. If the Autumn event left, which indicates that
a left keypress has occurred, evaluates to true at those three
times, then the on-clause

on left
agent = moveLeft (prev agent)

accurately describes that particular update function’s occur-
rence. The search space of Autumn predicates is defined
over the program state, which consists of the current object
instances, latent variables, and user events. At the start of
this step in the algorithm, there are not yet any latent vari-
ables in the program state, so the possible events use only the
objects and user events (e.g. clicked, clicked agent, or
intersects bullet enemy). Lastly, this event-finding pro-
cess is complicated slightly by the fact that on-clauses may
override each other, so perfect alignment between trigger
event and observed update function is not always necessary.
This nuance will be explained in Section 4.

The interesting case in the cause synthesis step is what
happens when a matching Autumn event cannot be found
for a particular update function. In the Mario example, this
happens with the update function bullets = addObj (prev
bullets) (Bullet (Position agent.origin)), which
describes a bullet object being added to the list of objects
named bullets. Bullet addition takes place at times 32, 41,
and 57, but no event is found that evaluates to true at exactly
those times. Since the existing program state does not give
rise to any matching events, we augment the program state
by inventing a new latent variable that can be used to express
the desired predicate.
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Specifically, we proceed by finding the “closest” event in
the event space that aligns with the update function. This is
the event that co-occurs with every update function occur-
rence, but may also occur during false positive times: times
when the event is true but the update function does not occur.
For bullet addition, this event is clicked, as every bullet is
added when a click takes place, but some clicks do not add a
bullet (specifically, at times 8, 9, 47, and 59). Having identified
this closest event, our goal is then to construct a latent vari-
able that acts as a finite state automaton that switches states
between the false positive times and true positive times (i.e.
the times when clicked is true and the update function oc-
curs). To be precise, the new variable takes one set of values
during the false positive times, and another set of values
during the true positive times. Calling the values taken by
the latent variable during true positive times accept values,
and those taken during the false positive times non-accept
values, the event

clicked && (latentVar in [/* accept values */])

perfectly matches the observed update function times. This
is because clicked is true during a set of false positive times,
and latentVar is in non-accept values at exactly those times,
so bullet addition does not take place, as desired. The full
Autumn definition of latentVar, including the transition
on-clauses that change its value over time, is shown in Figure
4. The variable name numCoins is substituted to note the
equivalence to a number of collected coins tracker.

The challenge in constructing this latent variable is learn-
ing the transition on-clauses that update the value of the
variable at the appropriate times. Note that these transition
on-clauses represent edges in the automaton diagrammed in
Figure 5 (hence the use of the term accept values or states).
We perform the transition learning step as part of a general
automaton search procedure, implemented via a SAT solver
as well as heuristically, to be discussed in Section 4.

3 Problem Formulation

Having provided a high-level description of the operation
of our synthesis algorithm, we now formalize the full in-
ductive synthesis problem for which our approach produces
approximate solutions.

4 The Algorithm

We now give detailed descriptions of the steps of our algo-
rithm introduced in Section 2. We focus on the latter two
steps of the algorithm—update function synthesis and cause
synthesis—referring the reader to the Appendix for full de-
tails of the object perception and tracking steps (Step 1 and
2), since they use more standard techniques and are not a
central contribution of our work.

4.1 Step 3: Update Function Synthesis

Together, the object tracking (Step 2) and update function
synthesis (Step 3) steps in the synthesis procedure answer the
question, “What does each object do at each time step?” Ob-
ject tracking first determines which objects in a grid frame
become which objects in the next grid frame, as well as
which objects were just added to or removed from the grid
frame, across the full observation sequence. Then, the update
function synthesis procedure computes an Autumn expres-
sion, the update function, that describes every object-object
mapping. This includes update functions describing object
addition and removal, which are represented as mappings
with a null or non-existent object: a null-object mapping
indicates object addition and an object-null mapping indi-
cates object removal. These update functions will eventually
become part of the on-clauses in the final output program.
To identify a matching update function, the procedure

simply enumerates through a fixed, finite space of update
function expressions, such as obj = moveLeft obj or obj
= nextLiquid obj. Some of these update function options
are simple translations, like moveLeft obj and move obj
-2 0, while others are more abstract options that describe
multiple concrete translations under different circumstances.
For example, the nextLiquid function causes an object to
move down when there is no object below it (i.e. there is no
chance of collision), and to the left or right if there is an object
below but there exists a path to a lower height in the left or
right direction. There are typically multiple update functions
in the space that describe any given object assignment, so
the procedure collects all of these possibilities.
At the end of this process, the synthesized update func-

tions may be visualized in a matrix depiction, which we call
the update function matrix (Figure 5). In the update function
matrix, the rows represent object_id’s, where objects are as-
signed the same object_id if one is transformed into the other
over time, and the columns represent times in the observa-
tion sequence (in increasing order). Each cell in the update
function matrix contains the set of possible update function
expressions corresponding to that particular object_id at that
particular time, or more precisely, those possibly undergone
by the object between the frame at that time and the frame
at the next time.

Ultimately, rather than a set of update functions for each
object_id at each time, wewant a single update function. This
is because we will eventually search for Autumn predicates
that evaluate to true at the times that each update function
takes place, to form the on-clauses of the final synthesized
program. Different choices for the single update function in
each cell in the update function matrix changes the sets of
times at which matching predicates must be true. For exam-
ple, say that the sets of possible update functions undergone
by an object in a three-grid-frame observation sequence are
{ moveLeft }, { nextLiquid, moveLeft }, and { nextLiquid,
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moveLeft }. It is possible that there exists an event that is true
at exactly the times 1, 2, and 3, which means that selecting
moveLeft in all three matrix cells gives rise to a matching
event. However, it is also possible that no event exists that
is true exactly at time 1 or exactly at times 2 and 3, so the
sequence of single update functions moveLeft, nextLiquid,
nextLiquid does not produce matching events. Though a
latent state automaton may possibly be constructed that al-
leviates this latter event search failure, automata search may
also fail. Thus, the selection of a single update function in
each cell of the update function matrix can make or break
the success of the later cause synthesis step. Further, there
might be multiple such selections that ultimately result in
the success of the full synthesis procedure, but not every pro-
duced output program will be the optimal solution described
in Section 3.
To handle this uncertainty with regard to which single

update function selection within each matrix cell will allow
matching events to be found for all update functions, we take
the following approach. Let a concrete update function matrix
be a “filtering” of the original matrix that contains just one
option in each cell from the original options. There are a
combinatorially large number of concrete matrices corre-
sponding to any given full update function matrix. We select
a small fixed set of concrete matrices from this large space
using a heuristic that selects a single update function within
a cell based on that update function’s frequency across all
rows of the matrix with the same object type. More frequent
update functions across an object type are more likely to be
selected than less frequent ones. The intuition behind this
heuristic is that selecting more frequent update functions
minimizes the number of distinct update functions within
the concrete matrix for which corresponding events must
be found. This can be viewed as trying to ”maximally share”
update functions across the cells of the matrix, resulting in
an overall output program with fewer on-clauses if the cause
synthesis step succeeds. This procedure is summarized in
Figure 5; full details are given in the Appendix.

4.2 Step 4: Cause Synthesis

By this stage in the synthesis process, the object types, the
object instance definitions, and the possible update functions
undergone by each object at every time have been identified.
Remaining to be synthesized are the event predicates associ-
ated with the update functions in on-clauses, and potentially
latent variables that are necessary for the appropriate events
to exist. At a high level, this step proceeds by enumerating
through each concrete update function matrix in the list
identified in the previous step, and searching for events and
latent state that explain each distinct update function. If this
process succeeds for a given concrete matrix, the overall
algorithm terminates, returning the final program. If this
process fails on the current concrete matrix, it is repeated on
the next concrete matrix in the list until success or until the

end of the list is reached, which indicates overall synthesis
failure.

To synthesize events, we first define a finite set of Autumn
predicates, which roughly embodies a prior about what types
of events are likely to be triggers of changes in the grid world.
We call these predicates atomic events, because we ultimately
enumerate both through the events themselves as well as
conjunctions and disjunctions of those atoms when searching
for a matching event. The atomic event set includes global
events, including user events like clicked, clicked obj1,
and left as well as object contact events like intersects
obj1 obj2 and adjacent obj1 obj2, among other forms.
These stand in contrast to the other type of event in the
atomic event set, called an object-specific event, which takes
different values for distinct object_id’s in addition to distinct
times. These events are effectively implemented as functions
in a filter operation; for example, the event obj.color ==
“red” is true for an object if the object is contained in the
filtered list

filter (obj -> (obj.color == “red”)) objects,

where objects denotes the set of all objects at the current
time. We note that while the evaluation of a global event over
time consists of a single vector of true/false values (one per
time), the full evaluation of an object-specific event consists
of a set of such vectors, one per distinct object_id.
Next, we describe the set of update functions for which

we must find associated events in a given concrete update
function matrix. In our setting, we make the assumption that
objects that belong to the same object type are all controlled
by the same set of on-clauses. This means that if two objects
both undergo the update moveLeft and the objects have the
same object type, then a single event (on-clause) caused both
of them to undergo the update. In contrast, if two objects
undergo moveLeft and belong to different object types, we
must synthesize a different event associated with each one,
since a different on-clause caused each object type’s update.
Thus, we synthesize events by enumerating through the
object types, and finding an event for each distinct update
function that appears across objects of that type.
Lastly, for each update function under consideration, we

construct what is called an update function trajectory, which
is a set of vectors 𝑣 ∈ {−1, 0, 1}𝑇 that describes the times
when the update function took place versus did not take
place (𝑇 is the length of the observation sequence). There
is one vector for each object_id with the object type under
consideration. Each vector position is 1 if the update function
took place at that time for that object_id, 0 if it did not take
place, and −1 if it may have taken place but could have been
overridden by another update function. This third scenario
is interesting, and arises because we structure synthesized
Autumn programs so on-clauses with update functions that
are more frequent in the observed sequence are ordered
before on-clauses with less frequent update functions. Thus,
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those later on-clauses will always override the earlier ones.
With respect to event search, an event is a match for an
update function if it is true for every time and object_id for
which the update function trajectory vector is 1, and false
whenever it is 0. The event may be either true or false when
the update function trajectory value is −1.
Notably, if the number of unique vectors in an update

function trajectory is 1, then the matching event may be a
global event, because there is no variance based on object-
specific features. Otherwise, if there is more than one unique
vector in the trajectory, then the matching event must be an
object-specific event, since the evaluated vector depends on
the particular object_id. It is possible that a matching event
may not be found in either of these cases, which signals that
we must enrich the program state with new elements that
were not used in the original event space. For simplicity,
in the rest of the section, we focus only on the case where
the unmatched update function trajectory contains a single
unique vector. This setting is called global latent state synthe-
sis; the alternative setting, called object-specific latent state
synthesis, is a straightforward extension.

4.3 Step 4b: Automata Synthesis

The input to the automata synthesis step is a set of update
function trajectories, one for each unmatched update func-
tion from the previous step. Each update function trajectory
is a single vector 𝑣 ∈ {−1, 0, 1}𝑇 . The goal of the automata
synthesis procedure is to construct the simplest latent state
automaton that enables us to write latent-state-based event
predicates matching each 𝑣 . For ease of exposition, we will
begin by describing the automata synthesis procedure for
the scenario in which there is exactly one unmatched update
function for which a latent-stated-based predicate must be
constructed. We will then describe the extension to the more
general scenario of multiple unmatched update functions.

To start, we frame our overall problem with respect to the
classic formulation of automata synthesis given input-output
examples. Classically, the problem of inductive automata syn-
thesis is to determine the minimum-state automaton that
accepts a given set of accepted input strings (positive exam-
ples) and rejects a given set of rejected input strings (nega-
tive examples). In our scenario, these positive and negative
input “strings” may be determined from the sequence of pro-
gram states (one per time) corresponding to the observation
sequence. In particular, we consider the set of prefixes (sub-
arrays starting from the first position) of the program state
sequence that have, as their last element, a program state
where the optimal co-occurring event is true. The optimal
co-occurring event is defined to be the event that co-occurs
with the update function in question, and has the minimum
number of false positive times, i.e. times when the event is
true but the update function does not occur. In the Mario ex-
ample, this co-occurring event is clicked. We then partition
the set of program state sequence prefixes into those that

Figure 6. Bird’s-eye view of the automata synthesis problem,
using the example of the Mario program. The bullet addition
update function, indicated by addObj, does not have a matching
trigger event. The closest event is clicked, which co-occurs
with bullet addition but also is true at false positive times. We
seek a latent variable that is true at one set of times (accept
values) and false at another set of times (reject values), so that
the conjunction of clicked and that latent variable perfectly
matches addObj’s times. As shown in the solution, this latent
variable initially has value zero, and changes to one then two
on agent-coin intersection, and changes back down on clicks.

end with a program state in which the update function took
place and those in which it did not take place. The former
set is the set of positive examples and the latter is the set of
negative examples in our automata synthesis problem.

This definition of positive and negative input strings may
be understood by considering the fact that, if there existed
a latent state automaton that fit this specification, then the
event

co_occurring_event && (latent_var in [/*
accepting state labels */])

would be a perfect match for the update function. This is
because the co-occurring event is true during a set of false
positive times with respect to the update function trajectory,
and the latent automaton is in rejecting states at exactly
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Figure 7. Three variant methods for automata synthesis, shown for Gravity I. The blue blocks move left, right, up, or down
depending on the button last clicked. The transition label left abbreviates (clicked leftButton), etc. See note in Sec. 4.3.2.
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those times (since those times correspond to the rejected
program state prefixes). Thus, finding such an automaton
would meanwewould have an event that matches the update
function under consideration.

Having discussed this simpler setting in which there is just
one unmatched update function in need of latent state, we
now return to the full problem setting, in which there may
be multiple unmatched update functions. In this scenario,
each unmatched update function specifies its own inductive
automata synthesis problem—a set of positive and negative
input strings—that if solvedwill give rise to amatching latent-
state-based predicate. One solution to this “multi-automata”
synthesis problem is to construct a distinct latent automa-
ton (variable) that satisfies each update function. However,
a smaller number of latent variables is often sufficient to
explain all the update functions. In fact, the product of all the
individual update function automata is a single automaton
that satisfies all specifications, up to changing the accept
states for each update function. However, taking the prod-
uct of the smallest automata satisfying individual update
functions does not necessarily produce the smallest product
automaton: It is possible that larger component automata
will multiply to form this minimal product instead. Thus,
optimizing each individual update function’s automaton and
multiplying is not a sufficient solution.

We now discuss three distinct algorithms for solving this
inductive automata synthesis problem: Full Sketch, Divide-
and-Conquer Sketch, and Heuristic. We note that at the cur-
rent stage of this ongoing work, we synthesize a single latent
state automaton that satisfies all unmatched update functions
within each object type, as opposed to a single automaton for
the entire program (i.e. across all object types). The reasonwe
do not try to find one program-level automaton is because the
human-written Autumn programs in our benchmark suite
use a different latent variable for each type—a choice that
appears to make the programs more human-understandable
than having one large product—and these sets of type-level
latent automata are also often more concisely expressed in
the Autumn language than a single product. We will for-
malize this approach with respect to the overall synthesis
objective of identifying the minimal Autumn program satis-
fying the observations in the final version of this work.

4.3.1 Algorithm 1: Full Sketch. In the Full Sketch ap-
proach, the complete multi-automata synthesis problem (for
each object type) is encoded as a Sketch problem. In other
words, Sketch is tasked with identifying the minimal au-
tomaton that accepts each update function’s language, as
specified by the observed examples, up to changing just the
accept states. As an example, consider the Autumn program
named Gravity I shown in Figure 6. The blue blocks contin-
uously move left, right, up, or down depending on which
of the four colored buttons was last pressed. A matching
event cannot be found for any of the four update functions

moveLeft, moveRight, moveUp, or moveDown, so their update
function trajectories are fed to the Sketch solver to produce
the 4-state automaton shown in Figure 6a. This new latent
variable then allows a matching predicate to be written for
each of the four update functions: true && latentVar == 1,
true && latentVar == 2, true && latentVar == 3, and
true && latentVar == 4, where the optimal co-occurring
event is true.

4.3.2 Algorithm2:Divide-And-Conquer Sketch. Rath-
er than attacking the full multi-automata synthesis problem,
Divide-And-Conquer Sketch tasks Sketch with solving each
update function’s automata synthesis problem individually,
and then combines those solutions together via product. The
intuition behind this approach is that synthesizing an au-
tomaton matching all update functions at once may face
scalability challenges, but finding an automaton matching a
single update function, which is likely smaller, may be easier.
As described previously, the smallest automaton satisfying a
single update function may not give to rise to the smallest
product, so the Divide-and-Conquer algorithm identifies a
small set of automata matching each update function instead.
It then takes the product over all update functions’ automata
sets, and computes the minimal automaton from that product
space. We illustrate this algorithm again with the Gravity I
example (Figure 6b). The algorithm first identifies a set of
automata that solve the automata synthesis problems corre-
sponding to the four unmatched update functions. Note that
each of these automata have just two states instead of the
full 4-state solution found in the Full SAT approach. Next,
it computes all automata products over these four automata
sets, and takes the minimal automaton from this product set,
which is the 4-state solution seen previously.

(A note about Figure 6b: For reasons of tractability, we
employ a simple heuristic to downsize each individual update
function’s automata set before taking the product across all
automata sets. At a high level, this heuristic identifies subsets
of the full automata set that are observationally equivalent
with respect to the given input observation sequence, and
keeps just one automaton from each of these equivalence
classes. This step is not shown in the figure. We will give a
more detailed explanation of this procedure and definition of
observational equivalence in the final version of this paper.)

4.3.3 Algorithm 3: Heuristic. Despite the simplicity of
the Sketch-based formulations of automata synthesis, their
scalability to problem settings with large automata is un-
clear, due to known limitations of SAT solvers. As such, we
also implemented a heuristic algorithm that synthesizes an
automaton satisfying a set of update function trajectories via
a series of greedy updates to an initial automaton (Figure 6c).
At a high level, this approach begins with an automaton with
a small number of states, and repeatedly splits states into
two based on a heuristic related to the search for transition
events. More precisely, the algorithm begins by searching for
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transition events (edges) that result in an automaton that pro-
duces a particular initial state sequence that has few distinct
states. If transition search fails, one of the original states is
split into two, and transition search is repeated. This process
continues until a satisfying automaton is identified.

5 Preliminary Evaluation

5.1 The Autumn Benchmark Dataset

To evaluate our algorithm, we manually constructed a set
of 31 Autumn programs, designed to collectively embody
a rich variety of 2D causal mechanisms. These benchmark
programs are described in Table 1 (Figure 8). Seven of the
models do not contain latent state, and hence test only the
functional component of our synthesis procedure, while the
remaining 24 models contain latent state, thus also testing
the automata synthesis component.

As our evaluation remains ongoing, for our preliminary re-
sults, wemanually constructed an input user action sequence
for each benchmark program, and ran the three synthesis
algorithms—Full SAT, Divide-and-Conquer SAT, and Heuris-
tic—on these sequences.We declared a success for a synthesis
algorithm if it produced an output program that matches the
observation sequence, though it need not be perfectly equiv-
alent to the ground-truth program. Both of these aspects
will be updated in our final evaluation, in which we plan to
measure the success of our synthesis algorithms on input
sequences generated by several human subjects interacting
with the models, and define success to be the output program
being semantically equivalent to the ground-truth program.

The results of this evaluation are shown in Table 2 (Figure
9) and Figures 10 and 11. While these results are subject to
change as we continue to finalize our work, it appears that
the Heuristic algorithm is currently most effective: It solves
all but four of the benchmarks, and does so in less time than
either of the other two algorithms, though the runtime is
very similar to Full Sketch’s runtime on many models. The
Divide-and-Conquer Sketch algorithm is notably slower than
both the Heuristic and Full Sketch algorithms on almost all
of the models that all three methods solve. Further, while the
vast majority of the programs synthesized by the Heuristic
and Full Sketch algorithms either exactly or almost exactly
match the ground-truth programs, many of the programs
synthesized by the Divide-and-Conquer method do not gen-
eralize as accurately. This is a result of the fact that we do
not enumerate the entire space of automata matching each
individual update function before taking the product. We
instead just enumerate a small, finite subset, so the computed
product is often not optimal.

The most interesting two results in our evaluation are the
following: (1) For four of the benchmark programs—Gravity
III, Count III, Count IV, and Double II—both Sketch-based
algorithms timed out after 24 hours without producing a so-
lution, while the Heuristic algorithm solved all those models

in minutes to hours: 2.3, 6.9, 118.3, and 17.3 minutes, respec-
tively. The poor performance of the Full Sketch method on
these models is due to the fact that the models’ latent state
automata are large (e.g. nine states and 24 edges for Gravity
III), so the underlying SAT solver does not terminate. Divide-
and-Conquer Sketch fails for the same reason, because while
individual-update-function-level automata are often smaller
than the overall automaton, in these models, each individ-
ual automaton is actually the same as the full automaton.
Hence, Sketch again does not terminate in the Divide-and-
Conquer framing. (2) For one benchmark program, Swap,
the Full Sketch approach timed out after 24 hours, but the
Divide-and-Conquer Sketch algorithm actually managed to
find a solution in 21.4 minutes. (The Heuristic algorithm also
solves this model, in 2.3 minutes.) The reason for this unusual
result is that the Swap model has a latent state automaton
with eight states and 64 edges, too large for the Full Sketch
algorithm to handle, but which is the product of eight two-
or three-state automata corresponding to the eight distinct
update functions in the program. Sketch can more easily
identify a two- or three-state automaton satisfying a speci-
fication, so the Divide-and-Conquer Sketch algorithm does
this eight times and hence terminates successfully.

We also comment on the benchmark programs that none
of our algorithms were able to synthesize. For these models,
many of the fixes are lower-level modifications to the overall
algorithm. For example, for the Grow II and Egg programs,
an event predicate needed to express the program is actu-
ally just missing from the atomic event space we use for
search, so it should be added to the space. Another limita-
tion is that sometimes the optimal co-occurring event com-
puted for a particular latent-state-based update function is
incorrect, causing synthesis to fail. However, the second-best
co-occurring event—that with the second smallest number
of false positives rather than the smallest—may be correct,
or the third-best, etc. This general kind of failure can be
reduced by implementing a form of “multiplicity handling”
with respect to co-occurring events, where instead of try-
ing only the best event and terminating if it causes the rest
of synthesis to fail, we try the top-k best events until one
hopefully succeeds. These kinds of updates to our current
algorithm are ongoing.

Finally, we emphasize that our benchmark results are still
preliminary and are subject to change as we continue to
modify both the Heuristic and the Sketch-based algorithms,
including with the generalizations described above. Some
of these modifications will affect all three algorithms’ run-
times, like the previously described “multiplicity handling”
generalization, while others will affect individual algorithms’
runtimes. For example, optimizations to the Sketch imple-
mentations could decrease the Sketch-based algorithms’ run-
times, while improvements that make the Heuristic algo-
rithm less brittle/more general would increase the Heuristic
algorithm’s runtimes. More precisely, while the Heuristic

13



1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Conference’17, July 2017, Washington, DC, USA Ria A. Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

algorithm works well on the current benchmark suite, the
nature of it being a heuristic means that there are certainly
classes of models on which it will fail, which we can patch
somewhat with more intricate algorithms. These kinds of
changes are likely necessary for the method to generalize
both to other Autumn programs we may add to the bench-
mark suite, as well as externally-sourced programs like those
discussed in Section 5.2. In addition, further thinking about
our evaluation design, including potentially running the
Sketch solver with a few different parameter options to fend
against blowup, to ensure the fairest possible comparison
between the three algorithms also remains part of future
work. These modifications may result in different relative
runtimes across the variant algorithms than we currently
observe (e.g. potentially lower Sketch runtimes and higher
Heuristic runtimes on some benchmarks). In our final evalu-
ation, we will also average the runtimes over more trials; our
current results are averaged over 2-4 runs, where the smaller
benchmarks were run more times and the larger benchmarks
run fewer times.

5.2 Generalization Beyond Autumn Programs

To further assess the generality of our techniques, we plan
to run the three synthesis variants on a benchmark dataset
that we did not ourselves construct. Using just the Autumn
benchmark suite is akin to evaluating on only the “training

set” for our algorithm, as AutumnSynth was designed with
knowledge of these particular programs in mind. In particu-
lar, we will evaluate on the suite of Atari-style games created
by Tsividis et. al. (http://pedrotsividis.com/tbrl.html). These
games were written in the PyVGDL language for describ-
ing grid-world-based video games, and exhibit a number
of differences from Autumn programs. These differences
include that all the games run on 330 pixels by 900 pixel
grids while most Autumn programs run on 16 by 16 grids.
As a proof-of-concept that our method can synthesize these
externally-sourced benchmark programs, we ran a version
of the Heuristic algorithm with minor modifications on an
observation sequence from the Tsividis et. al. corpus’s Aliens
program, shown in Figure 12. The algorithm succeeded, pro-
ducing an output program with two object-specific latent
automata describing objects moving at different speeds. We
are currently generalizing lower-level details of our imple-
mentation so as to incorporate the modifications necessary
for synthesizing this different flavor of models. Successfully
synthesizing a large portion of this external benchmark will
concretize the generality of our approach, and we are excited
about pursuing this line.
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Figure 8. Descriptions of the 31 benchmark programs.
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Figure 9. Table of input/output lengths and algorithm runtimes on each of the benchmark programs. A bottom symbol
indicates timeout after 24 hours. An X symbol indicates that the benchmark’s solution was outside the support of the synthesis
algorithms (described in more detail in Section 5.1) and thus we did not time the algorithms on these benchmarks. We will add
these evaluations in the final version of the paper, when we have added the generalizations that alleviate these limitations.
Finally, the N/A’s for the Sketch and D&C Sketch runtimes on the first seven benchmarks are there because those models
do not possess latent state, while the three algorithms vary only in their latent automata synthesis procedures. Since we
wanted to highlight the runtime differences arising from core automata synthesis differences instead of lower-level algorithmic
choices needed to support them (which would be more prominent in models without latent state), we have only evaluated the
Heuristic algorithm on these non-latent-state based models for our first evaluation.
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Figure 10. Runtimes for the variant AutumnSynth algorithms on each of the benchmark programs solved by at least one
algorithm. Note that the first 7 benchmarks (left of the dashed line; Particles, Ants, Chase, Magnets, Invaders, Sokoban, and
Ice) all do not contain latent state, so we currently evaluate only one of the algorithms (Heuristic) on them (see Figure 9
caption for further explanation). We also note that we ran the models with a timeout of 24 hours, so the runtimes that exceed
the size of the plot did not finish before then, and that synthesis success is defined as producing a program that matches
the observations—not necessarily being semantically equivalent to the ground-truth program. Finally, we note that while
these results provide a snapshot of the current state of our project, they are subject to change as we continue to develop our
variant algorithms. In particular, yet-to-be-implemented generalizations of the Heuristic method and optimizations to the
Sketch-based algorithms could lead to different relative runtimes across the three algorithms (e.g. lower Sketch runtimes and
higher Heuristic runtimes) for some benchmarks. See Section 5.1 for a more detailed discussion.
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Figure 11. Sample latent state automata synthesized by AutumnSynth. (a) Paint model. Each state corresponds to a different
color, indicating the color of the block added when a user clicks on an empty grid square. Pressing up cycles through the
colors. (b) Gravity III model. Each state corresponds to one of the nine directions of motion formed by crossing three possible
x-directions (-1, 0, 1) with y-directions (-1, 0, 1). (c) Water Plug model. Clicking one of three colored buttons changes the
color of the block added when a user clicks an empty grid cell to the color of the button. (d) Wind model. Snow particles
fall downward, left-diagonally, and right-diagonally, depending on the wind state that changes with left/right arrow keys.
(e) Count IV model. Instead of giving the Autumn language description for this automaton, we show the on-clauses for the
update functions that depend on the latent variable instead. Here, a particle moves left if the total number of left presses is
greater than the total number of right presses up to a maximum difference of 4. It moves right according to a similar rule, and
is stationary in state zero.
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Figure 12. The Aliens program from the Tsividis et. al. corpus. Pressing arrow keys moves the blue agent left and right, and
clicking causes it to shoot a pink bullet upward, as long as there are no other pink bullets already in the frame. Gold enemies
are regularly created at the top-left corner, and move right once every three time steps. The enemies randomly shoot red
bullets, which move down every two time steps. Pink bullets kill enemies, red bullets kill the agent, and both bullets destroy
the gray shield blocks. The latent variables are the enemy and pink bullet speeds: the bullets do not move in sync but rather
every two or three time steps from the time of their creation, so object-specific latent fields are used to track when they move.
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