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We present a new algorithm that synthesizes functional reactive programs from observation data. The key
novelty is to iterate between a functional synthesis step, which attempts to generate a transition function
over observed states, and an automata synthesis step, which adds any additional latent state necessary to
fully account for the observations. We develop a functional reactive DSL called Autumn that can express a
rich variety of causal dynamics in time-varying, Atari-style grid worlds, and apply our method to synthesize
Autumn programs from data. We evaluate our algorithm on a benchmark suite of 30 Autumn programs as
well as a third-party corpus of grid-world-style video games. We find that our algorithm synthesizes 27 out
of 30 programs in our benchmark suite and 21 out of 27 programs from the third-party corpus, including
several programs describing complex latent state transformations, and from input traces containing hundreds
of observations. We expect that our approach will provide a template for how to integrate functional and
automata synthesis in other induction domains.
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1 INTRODUCTION

In the last decade, the traditional view of program synthesis as a technique for automating program-
ming tasks has broadened due to the following observation: Programs can compactly represent a
wide variety of structured knowledge, making programming languages powerful knowledge repre-
sentations in artificial intelligence systems [Ellis et al. 2021; Evans et al. 2021]. Program synthesis in
this context is then not primarily concerned with improving programmer productivity, but instead
captures a form of automated knowledge discovery, with a number of recent advances in areas as
diverse as learning programs describing biological data [Köksal et al. 2013], learning computer-aided
design programs from 3D meshes [Du et al. 2018], discovering phonological rules [Ellis et al. 2022;
Zuidema et al. 2020], and animal behavior modeling [Tjandrasuwita et al. 2021].
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Much of this work at the intersection of program synthesis and AI can be framed as addressing
the challenge of theory induction, an important knowledge discovery problem in both cognitive
science and AI. At a high level, it asks, given some observations, what is the underlying theory
or model that generates or explains those observations? We use theory to mean not just formal
scientific theories, but also everyday cognitive explanations that humans intuit on the fly [Gopnik
and Wellman 2012; Ullman and Tenenbaum 2020]. For example, a child who has figured out how a
new toy works after a few minutes of play has come up with a theory of the toy’s mechanism. In
particular, the child has likely come up with a causal theory capturing precise causal relationships
between observations. Causal theories are especially valuable as they can be used to predict how a
system will react to future stimuli.

Unfortunately, existing methods of program synthesis are not yet suited to capture the rich space
of theories that humans can learn from data. A major difficulty is that many real-world phenomena
are reactive, time-varying systems—they change dynamically in reaction to occurring events. By
itself, reactivity would not pose a challenge if the state in question was fully observable. In that case,
we could synthesize a transition function mapping observed input states to observed output states
at every point in time. However, current methods of inductive program synthesis—synthesizing
programs from input-output examples—cannot cope with time-varying latent state—i.e. state that
changes over time and cannot be directly observed but still affects the dynamics of the system.

There is a variety of prior work touching upon different parts of the problem of theory induction
with latent state. Some work synthesizes functions with unseen inputs in the context of unsupervised
learning [Ellis et al. 2015], but the reactive setting is more challenging because of the need to
discover how that latent state evolves over time, rather than just its static value. More recently,
the Apperception Engine [Evans et al. 2020] was developed in response to a very similar reactive
problem setting as our own, but it largely contributes a new formalism for inducing theories as
logic programs rather than a new synthesis algorithm.

Further, there is an extensive body of work on reactive synthesis that seeks to generate reactive
programs with latent state, but much of this work focuses on synthesizing finite state programs
from temporal logic specifications, rather than examples (e.g. [Bloem et al. 2012] or [Bansal et al.
2018]). Some work has been extended to infinite state systems [Beyene et al. 2014], and even to
functional reactive programs [Finkbeiner et al. 2019]. Most recently, there have also been efforts to
combine reactive synthesis with syntax-guided synthesis [Choi et al. 2022] given logical formulas
to produce large programs with latent state, as well as to synthesize programs from a mix of logical
specifications and examples [Newcomb and Bodik 2019]. However, even this recent work does not
address the problem of inducing such programs purely from examples on which we focus, and the
closer mixed specification approach tackles smaller benchmarks than our own.

To address this gap between current inductive program synthesis approaches and the reactive set-
ting, we develop a novel program synthesis algorithm that unites two largely orthogonal traditions
within programming languages and formal methods: functional program synthesis and automata
synthesis. Specifically, we show that we can induce reactive programs by splitting synthesis into
two procedures, a functional synthesis procedure and an automata synthesis procedure (Fig. 1). The
functional synthesis step attempts to synthesize the parts of the program that do not depend on
latent state. If functional synthesis fails to synthesize a program component explaining an observed
output from observed inputs, our algorithm then uses automata synthesis to induce latent state in
the form of a finite state automaton, where transitions in the automaton encode the dynamics of the
latent state. At a high level, the automata synthesis procedure enriches the original program state
with new latent structure that then allows a subsequent iteration of the functional synthesis step to
succeed. Importantly, the algorithm is modular along two dimensions. First, it operates modularly
over observed elements in the program, allowing the system to synthesize large programs with
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Fig. 1. Overview of the AutumnSynth algorithm. The input is a sequence of observed grid frames and

associated user actions (clicks and arrow keypresses), and the output is a program in the Autumn language

that generates the observed grid frames given the user actions. AutumnSynth first attempts to synthesize a

fully functional program that generates the input sequence. This involves parsing a set of object variables

in each frame (Perception); tracking how those objects change over time (Tracking); finding an Autumn

expression called an update function describing how each object changes at each time (Update Function

Synthesis); and synthesizing an event, or predicate over the observed state, that triggers each update function

over time (Event Synthesis). If event synthesis fails, AutumnSynth augments the observed state by inventing

an unobserved or latent variable via automata synthesis, which then allows the desired event to be expressed.

unbounded numbers of components, each with their own internal states. Second, it maintains clear
boundaries between the functional and automata synthesis modules, allowing it to leverage existing
algorithms for both procedures. In fact, our evaluation demonstrates the approach using both an
off-the-shelf SAT-based synthesizer as well as a heuristic procedure for automata synthesis.
We anticipate that our two-layer approach to integrating functional and automata synthesis

will be valuable to a wide breadth of synthesis domains. In this paper, we demonstrate its value
by instantiating it in a particular domain of interactive 2D grid worlds. While much simpler than
the real world, this domain still spans a wide range of dynamic theories of interest in artificial
intelligence, cognitive science, and other scientific disciplines, including those from classic Atari-
style video games and more recent physics-based games [Chollet 2019a]. Specifically, we have
developed a functional reactive DSL called Autumn (from automaton) that is designed to concisely
express the rich variety of causal dynamics within these grids (Fig. 2, Fig. 3, Fig. 4). The inductive
synthesis problem addressed by our algorithm is, given a sequence of observed grid frames and
corresponding user actions (clicks and keypresses), to synthesize the program in the Autumn
language that generates the observations. The expressiveness of Autumn means that solving the
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problem of causal theory induction in the context of Autumn programs will be an important step
towards the goal of learning causal theories in cognitive science and AI.

In summary, our paper makes the following contributions:
(1) We present a new functional reactive domain-specific language (Autumn) suitable for ex-

pressing and synthesizing non-trivial grid world programs.
(2) We introduce a new algorithm, AutumnSynth, that induces Autumn programs from obser-

vation data. The fundamental novelty of the algorithm is its high-level, two-layer approach
to combining functional and automata synthesis in an error-driven manner. The lower-level
algorithms used for each step may be modified or swapped for other methods, which is useful
when applying the approach to other theory induction domains.

(3) We introduce a benchmark suite of 30 Autumn programs which we call the Causal Inductive
Synthesis Corpus (CISC), to spur the development of further algorithms in this space. The
programs in this benchmark suite are designed to capture the diversity of time-varying causal
models that may be manifested in 2D grids.

(4) We present an empirical evaluation of the scalability and expressiveness of AutumnSynth
on both CISC and a third-party dataset of 27 grid-world-style games written in a Python video
game framework [Tsividis et al. 2021]. We show that AutumnSynth can induce significantly
more complex programs and from much longer inputs than previously known.

More broadly, we expect AutumnSynth will provide a template for how to integrate functional
and reactive synthesis in the context of theory induction. In the rest of the paper, we provide a
high-level overview of our work (Section 2), followed by an in-depth description of the algorithm
(Sections 3 and 4), our evaluation (Section 5), and related and future work (Sections 6 and 7).

2 OVERVIEW

In this section, we briefly describe the Autumn language and AutumnSynth algorithm and walk
through a concrete execution of the algorithm on a video-game-inspired example.

2.1 Running example

As a running example, we use a simple program we call Mario, which is inspired by the popular
video game. In this program, there is an agent representing Mario, which is rendered as a single
red pixel. Mario can move left or right and can jump onto platforms in response to user keyboard
commands. Mario can also collect coins, which are a different object type rendered as gold pixels.

As an interesting added twist, when the player clicks on the grid, Mario shoots a bullet upwards,
but each bullet costs one coin, so Mario can only shoot if it has collected at least one coin. If so, then
shooting will decrement its coin count by one. Notably, the number of coins that Mario possesses
is not displayed anywhere on the grid at any time; it is tracked by a scalar variable in the program.
This creates a challenge for any synthesis algorithm trying to infer a program from a sequence of
observations because the synthesizer has to infer the existence of this latent state to explain why
sometimes clicking on the grid results in a bullet and other times it does not. At the top of the grid,
an enemy object continuously moves between the left and right side of the frame and disappears if
it is hit by one of Mario’s bullets. Figure 2 illustrates a few steps of the game.

2.2 The Autumn Language

Autumn is a functional reactive (FR) language designed to concisely express a rich variety of causal
mechanisms in interactive 2D worlds. These mechanisms range from distillations of real-world,
everyday causal phenomena, such as water interacting with a sink or plants growing upon exposure
to sunlight, to video game-inspired domains such as Atari’s Space Invaders or our Mario running
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Fig. 2. An observation trace from the Mario program. Black arrows indicate user keypresses and circles

indicate clicks. An agent (red) moves around with arrow key presses and can collect coins (yellow). If the agent

has collected a positive number of coins, when the human player clicks, a bullet (gray) is released upwards

from the agent’s position, and the agent’s coin count is decremented. Otherwise, clicking does nothing.

example (see Fig. 1 for more examples). The design of Autumn was inspired by prior FR languages
such as Elm [Czaplicki and Chong 2013], but differs from those languages in some important
respects to make the synthesis process more tractable as explained in the rest of this section.

Every Autumn program is composed of four parts: Environment setup, Type definitions, Stream
definitions and Event handling. The Environment setup defines the grid dimensions and background
color for a program. Type definitions define object types; each object type has a shape represented
as a list of 2D positions relative to the object center and each associated with a color, as well as a set
of internal fields which store additional information about the object (e.g. a Boolean healthy field
may store an indicator of the object’s health). The object type definitions for the Mario program are
shown below. In this case, only the Enemy object type has additional state, in the form of a Boolean
field indicating whether the enemy’s current direction of motion is left or right. The definitions
of the other types only include the list of colors and 2D positions that define how the object is
rendered. Every instance of an object (e.g. every Mario or every Coin) also has a 2D position without
it needing to be declared in the type definition.

object Mario ( [(0, 0, red)] )

object Coin ( [(0, 0, gold)] )

object Platform ( [(-1, 0, orange), (0, 0, orange), (1, 0, orange)] )

object Enemy (movingLeft : Bool) ( [(-1, -1, purple), (-1, 0, purple),

(0, -1, purple), (0, 0, purple),

(1, -1, purple), (1, 0, purple)] )
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Fig. 3. An observation trace from the Ice program. At times 1 and 4, the user presses down (red arrow),

releasing a blue water particle from the gray cloud. The water moves down to the lowest possible height,

moving to the side (time 10) if necessary to reach this height. The user presses down again at time 12, and
then clicks anywhere (red circle) at time 15. The click causes the sun to change color and the water to turn to

ice, which stacks rather than tries to reach the lowest height. A down press at time 19 releases another ice
particle from the cloud. Finally, a click at time 24 turns the sun yellow again and turns the ice back to water.
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Fig. 4. An observation trace from the Gravity I program. A white 2 × 2 block initially moves down one cell per

time, and clicking (indicated by the cyan circle) any of the four buttons on the grid borders causes the block

to change direction. Specifically, clicking the left border button causes the block to move left (time 7), clicking
the top button causes it to move up (time 12), clicking the right button causes it to move right (time 17), etc.

The next part of a program consists of Stream definitions, which define object instances and other
auxiliary values and their evolution over time in the absence of external events. For example, in
the Mario program, we have four stream variables: one for Mario, one for the coins, one for the
platforms, and one for the number of coins—the invisible latent state that tracks how many coins
have been gathered and not used. Each of these streams is defined using the primitive Autumn
language construct called initnext, which defines a stream of values over time using the syntax
var = init expr1 next expr2. The initial value of the variable (expr1) is set with init, and the
value at later time steps is defined using next. The next expression (expr2) is re-evaluated at each
subsequent time step to produce the new value of the variable at that time. Within the next section
of the stream definition, it is possible to access the previous value of the stream using the primitive
prev. For example, below are some of the stream definitions in the Mario program:
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mario : Mario

mario = init (Mario (Pos 7 15)) next (moveDownNoCollision (prev mario))

coins : List Coin

coins = init (list (Coin (Pos 4 12)) (Coin (Pos 7 4)) (Coin (Pos 11 6)))

next (prev coins)

bullets : List Bullet

bullets = init (list) next (prev bullets)

numCoins : Int

numCoins = init 0 next (prev numCoins)

For the mario stream, the init section initializes the agent, and the next definition uses a user-
defined function moveDownNoCollision which specifies that later values of the agent should move
down one unit from the previous value whenever that is possible without collision. The coins

stream illustrates that streams can also be lists of objects, not just individual objects. In the absence
of other events, the list of coins will stay the same throughout the game, but shortly we will see
the code that will make the list shrink as coins are collected by Mario. Similarly, the initial empty
bullets list will grow as Mario shoots bullets and shrink if a bullet hits the enemy and is hence
removed. Finally, the numCoins stream represents the latent state that tracks the number of coins
collected by Mario. In general, any value that is not an object will be latent state since it will not be
directly observable through the interface. Streams corresponding to latent state can be of primitive
types int, string, or bool as well as lists of such values.

The fourth segment of an Autumn program is Event handling and is expressed using a construct
called on-clauses which are expressed via the high-level form

on event

intervention

where event is a predicate and intervention is one or more assignment of the form var = expr that
override the default next value in the stream defined by the next clause in the Stream definitions
section. For example, the code below shows some of the on-clauses of the Mario game.

on intersects (prev mario) (prev coins)

numCoins = (prev numCoins) + 1

coins = removeObj coins (-> obj (intersects (prev mario) (prev obj)))

on clicked && ((prev numCoins) > 0)

numCoins = (prev numCoins) - 1

bullets = addObj bullets (Bullet ((prev mario).origin))

The first on-clause indicates that when Mario intersects with a coin in the list of coins, the coin
is removed from the list, and the number of coins is incremented. The second one indicates that
when the grid is clicked and the number of coins is positive, the number of coins is decremented
and a bullet is added at the current position of Mario (the -> symbol denotes a lambda function). We
note also that the coin removal syntax demonstrates that the prev function may be used not only
to access the previous value of a stream but also the previous values of individual objects within
a stream that is a list of objects (i.e. the use of prev obj instead of prev coins). Keeping track of
object history in addition to stream history as such allows more fine-grained control over object
dynamics. For example, it allows individual objects in a list to be modified or removed without
resetting all other list objects to their previous values, as would happen if removeObj coins were
replaced with removeObj (prev coins) above.
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One important difference between Autumn and other FR languages like Elm is that on-clauses
are evaluated sequentially, with the effect that later on-clauses may update a variable in a way that
composes with updates from earlier on-clauses or completely overrides it. We found that for many
programs, this led to significantly more concise programs, which made synthesis more efficient.

2.3 Synthesis Overview

The AutumnSynth algorithm, is an end-to-end synthesis algorithm that takes as input a trace of a
program—corresponding to a sequence of grids for a range of time steps and the corresponding user
inputs for those steps—together with a library of language components. From these, the algorithm
synthesizes an Autumn program using the given components that, when given the observed
sequence of user inputs, matches the behavior observed in the trace. The algorithm consists of four
distinct steps, each producing a new representation of the input sequence. These steps are:
(1) perception: object types and instances are parsed from the observed grid frames;
(2) object tracking: links objects in consecutive time steps to distinguish between (1) objects that

moved or changed from one time step to the next, (2) objects that were created or destroyed
and therefore lack a matching object in the preceding or subsequent timestep respectively;

(3) update function synthesis: update functions—Autumn expressions describing each object-
object mapping from Step 2—are synthesized from the given components; and

(4) cause synthesis: Autumn events (predicates) that cause each update function from Step 3 are
sought, and new latent state in the form of automata is constructed upon event search failure.
We give details for these steps in Section 4, focusing primarily on cause synthesis since that

procedure represents the most novel aspect of our work. First, we provide some intuition by briefly
describing how these steps are used to synthesize the Mario program from the running example.

2.3.1 Perception. The object perception step first extracts the object types and object instances from
the input sequence of grid frames. For the example, the perception phase will identify three different
object types: (1) a general single-cell type with a color parameter corresponding to the (red) agent,
(yellow) coin, and (gray) bullet objects; (2) a platform type that is a row of three orange cells; and (3)
an enemy type that is a rectangle of six blue cells. A list of object instances is extracted from each grid
frame in the input sequence, where an object instance describes the object’s type, position, and any
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field values. For example, the object instances for the first grid frame
in Fig. 2 (magnified on the right) are a red single-celled object (agent)
at position (7, 15); three yellow single-celled objects (coins) at positions
(4, 12), (7, 4), and (11, 6); three platform objects at positions (4, 13), (8,
10), and (11, 7); and an enemy object at position (6, 0). A few points to
highlight are that, at this stage, the system does not know that the coins
and the agent are different kinds of objects, as opposed to different
colors for the same kind of object; also note that for multi-cell objects,
the system assigns the object center to be the center of the pixel group.
In addition, all Autumn objects are currently partially transparent, so
occlusion is not a concern for the perception step.

2.3.2 Object Tracking. Next, the object tracking step determines how each object in each grid
frame changes in the next grid frame. For example, it identifies that the agent object at position (7,
15) in the second grid frame corresponds to the agent object at position (6, 15) in the third grid
frame (i.e. it moved left). Intuitively, this step tracks the changes undergone by every object across
all grid frames. In our current implementation, both Perception and Tracking are heuristic-based.
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2.3.3 Update Function Synthesis. This step derives an expression for each object in a given grid
frame that describes the change in the object’s visible attributes (position and color) in that time step.
The expressions are synthesized using the components given as input to the algorithm. In our exam-
ple, this step identifies that the expression agent = moveLeft (prev agent) accurately describes the
change undergone by the agent object between the second and third grid frames from Fig. 2. Often,
there are multiple such expressions that match any given mapping. For example, the agent’s left
movement during the first time step might also be described by agent = moveLeftNoCollision (

prev agent) or agent = moveClosest (prev agent) Platform, where the latter indicates movement
one unit towards the nearest object of type Platform. The update function synthesis step will not try
to disambiguate among these options. Instead, it will return a set of possibilities to the subsequent
Cause Synthesis step, which will be responsible for identifying the correct update function.

2.3.4 Cause Synthesis. Finally, the cause synthesis step searches for an Autumn event that triggers
each update function identified in the previous step. For now, we will assume that update function
synthesis produced a unique update function for each object at each time step; in Section 3 we
will elaborate on the general case where this is not true. With this assumption, the goal is now
to explain why each function was triggered when it was triggered. Autumn will first attempt
to explain the triggering of each update function based on observable events, and then it will
synthesize latent state to explain the triggering of any remaining updates that cannot be explained
by the observable events alone. To find an Autumn event that triggers a particular update function,
the algorithm collects the set of times that the update function is used and enumerates through a
space of Autumn events until it finds one that evaluates to true at exactly those times. For example,
say that the Mario object undergoes the update function agent = moveLeft (prev agent) at times
1, 4, and 5. If the Autumn event left, which indicates that a left keypress has occurred, evaluates
to true at only those three times, then the on-clause

on left

agent = moveLeft (prev agent)

accurately describes that particular update function’s occurrence. The search space of Autumn
predicates is defined over the program state, which consists of the current object instances, latent
variables, and user events. At the start of this step in the algorithm, there are not yet any latent
variables in the program state, so the possible events use only the objects and user events (e.g.
clicked, clicked mario, or intersects bullet enemy). Lastly, this event-finding process is simpli-
fied by the fact that on-clauses may override each other, so perfect alignment between the trigger
event and observed update function is not always necessary. For example, even though mario

does not undergo the update function mario = moveDownNoCollision (prev mario) at every time,
the trigger event learned for this update function is simply true. This is because later on-clauses
describing other behaviors like moveRight and moveLeft override the on-clause at appropriate times,
so mario ends up undergoing moveDownNoCollision exactly when desired. Searching for a trigger
event in the search space that exactly matches the times of moveDownNoCollision, in contrast, may
be much more challenging or even impossible. This nuance will be explained in detail in Section 4.
The interesting case in the cause synthesis step is what happens when a matching Autumn

event cannot be found for a particular update function. In the Mario example, this happens with the
update function bullets = addObj (prev bullets) (Bullet (mario.origin)), which describes a
bullet object being added to the list of objects named bullets. Bullet addition takes place at times
32, 41, and 57, but no event is found that evaluates to true at exactly those times. Since the existing
program state does not give rise to any matching events, the algorithm must augment the program
state by inventing a new latent variable that can be used to express the desired predicate.
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Fig. 5. (a) Diagram of automaton representing the numCoins latent variable synthesized for theMario program.

The start value is zero, and the accept values (i.e. the values during which clicked causes a bullet to be added
to the scene) are 1 and 2. (b) Description of the numCoins latent variable in the Autumn language. We note

that the reason that the automaton states only go up to two collected coins instead of three is because the

input sequence provided only demonstrates a maximum of two coins being collected at a time. We discuss

this and give an example where the automaton has learned all three accept states instead in Section 5.

Specifically, the algorithm proceeds by finding the “closest” event in the event space that aligns
with the update function. This is the event that co-occurs with every update function occurrence,
but may also occur during false positive times: times when the event is true but the update function
does not occur. For bullet addition, this event is clicked, as every bullet is added on a click, but some
clicks do not add a bullet. Having identified this closest event, our goal is then to construct a latent
variable that acts as a finite state automaton that switches states between the false positive times
and true positive times (i.e. the times when clicked is true and the update function occurs). To be
precise, the new variable takes one set of values during the false-positive times, and another set
during the true positive times. Calling the values taken by the latent variable during true positive
times accept values, and those during the false-positive times non-accept values, the event

clicked && (latentVar in [/* accept values */])

perfectly matches the observed update function times. This is because clicked is true during a
set of false-positive times, and latentVar is in non-accept values at exactly those times, so bullet
addition does not take place, as desired. The full Autumn definition of latentVar, including the
transition on-clauses that change its value over time, is shown in Fig. 5. The variable name numCoins
is substituted to note the equivalence to a number of collected coins tracker. We note that this
automaton—and all automata synthesized by our algorithm—are finite-state automata, even though
it is possible to write an Autumn program describing infinite-state automata (e.g. if the Mario
program in Section 2 described coins being added to the program at regular intervals instead of
a fixed set of three coins, its counter variable would be infinite-state). In these infinite cases, our
method synthesizes a finite-state approximation to the ground-truth automaton that suffices at
explaining the given finite input trace.

The challenge in constructing this latent variable is learning the transition on-clauses that update
the value of the variable at the appropriate times. Note that these transition on-clauses represent
edges in the automaton diagrammed in Fig. 5 (hence the use of the term accept values or states). We
perform the transition learning step as part of a general automaton search procedure, implemented
via a SAT solver as well as heuristically, to be discussed in Section 4.

3 PROBLEM FORMALIZATION

In this section, we formally specify the synthesis task solved by the AutumnSynth algorithm.
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3.1 Modeling the Autumn language

We define the AutumnSynth algorithm in terms of a simplified model of the Autumn semantics.
In this model, an Autumn program is represented as a tuple ⟨T ,X,A,O, 𝐹 , 𝑍, 𝑋0⟩, defined below:
• Object Types: T is a set of object types, where each object type 𝑡 ∈ T consists of a shape 𝑆 and
a list of additional data fields 𝑑𝑎𝑡𝑎, i.e. 𝑡 = ⟨𝑆, 𝑑𝑎𝑡𝑎⟩. A shape 𝑆 is a set of cells, where each cell
𝑐 ∈ N × N is a 2D position relative to center (0, 0). Each data field 𝑓 ∈ 𝑑𝑎𝑡𝑎 is a symbol 𝑛.

• States: Each state 𝑋 ∈ X is a tuple ⟨𝑋𝑜 , 𝑋𝑙 ⟩, where 𝑋𝑜 is a set of objects and 𝑋𝑙 is a set of latent
variables. Each object 𝑥𝑜 ∈ 𝑋𝑜 is a tuple ⟨𝑡, 𝑝, 𝑑⟩ where 𝑡 ∈ T is an object type, 𝑝 ∈ N × N is the
origin of the object in the 2D grid, and 𝑑 is the set of data values associated with the data fields of
𝑡 . Each latent variable 𝑥𝑙 ∈ 𝑋𝑙 is a value with integer type. Note that in this simplified model of
the language, the different kinds of stream variables (objects, lists of objects, scalars, etc. ) have
been flattened to a simpler representation where all the objects belong to a single set and all the
scalars belong to another. After a program has been synthesized in this representation, the code
generator will be responsible for organizing the state into individual streams.

• Actions: The action space A is a set of three types of elements 𝑎: (1) arrow key presses (left,
right, up, and down); (2) clicks on the observed grid, where each click is associated with a 2D
grid position 𝑝 ∈ N × N; or (3) no action.

• Observations: The observations O are 2D grids of colored cells, each of the same dimensions.
• Transition Function: Let H = X × A be the space of program histories, where a program
history is simply the most recent state and action at any given time. The transition function 𝐹 is
defined as a composition of a 𝑛𝑒𝑥𝑡 function 𝑛𝑒𝑥𝑡 : H → X corresponding to the next function
in the stream definition and a set C of𝑚 on-clause functions 𝑜𝑖 : X ×H → X. These functions
are described in greater detail below:
– The next function. The 𝑛𝑒𝑥𝑡 function defines the “default” modification to the current set
of state variables given history 𝐻 ∈ H . Note that in this simplified formalism, all the next

clauses in the individual stream definitions are collapsed into a single 𝑛𝑒𝑥𝑡 function applied
to the entire state 𝑋 .

– On-clause functions. The on-clause functions are a set of𝑚 functions 𝑜1, . . . , 𝑜𝑚 where each
𝑜𝑖 is a tuple ⟨event𝑖 , update𝑖⟩. Each event𝑖 : X ×H → {0, 1} is a Boolean predicate over the
history and the new/intermediate state (described below). and each update𝑖 : X ×H → X is
a function that modifies the current state 𝑋 given the same input.
From these event𝑖 and update𝑖 functions, each 𝑜𝑖 is then

𝑜𝑖 (𝑋,𝐻 ) =
{
update𝑖 (𝑋,𝐻 ) if event𝑖 (𝑋,𝐻 ),
𝑋 otherwise.

Given these components, we define the transition function 𝐹 : H → X to be

𝐹 (𝐻 ) = 𝑜𝑚 (. . . (𝑜2 (𝑜1 (𝑛𝑒𝑥𝑡 (𝐻 ), 𝐻 ), 𝐻 ) . . . ), 𝐻 ). (1)

Note that each 𝑜𝑖 has access to both the original state at the end of the previous timestep (which
in the code can be accessed through prev), as well as to the new or intermediate state as computed
by next or by any previous on-clauses. This models the overriding behavior of on-clauses that
was defined in Section 2.2, in which later on-clauses override earlier ones.

• Observation Function: The deterministic partial observation function 𝑍 : X → O renders the
shape of each object 𝑥𝑜 ∈ 𝑋𝑜 at the object’s position in the 2D grid. Specifically, for an object
𝑥𝑜 = ⟨𝑡, 𝑝, 𝑑⟩ with 𝑡 = ⟨𝑆, 𝑑𝑎𝑡𝑎⟩, 𝑍 translates the shape 𝑆 by the position 𝑝 to obtain the observed
rendering of 𝑥𝑜 .
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• Start State: The start state 𝑋0 gives the set of objects and latent variables present at the start of
the simulation.

3.2 Inference Task

Given a sequence of observations (𝑂1, . . . ,𝑂𝑇 ) and corresponding sequence of actions (𝐴1, . . . , 𝐴𝑇−1)
from the decision process, our goal is to recover the object types T , initial state 𝑋0, and transition
function 𝐹 that correctly produces the observed data. These three components (T , 𝑋0, 𝐹 ) specify
an Autumn program, although there is still some additional work to do at that point to translate
this program from this simplified formalism to the full Autumn syntax, for example by splitting
the state and the 𝑛𝑒𝑥𝑡 functions into individual stream definitions as explained in Section 4.6.
In general, the inductive synthesis problem is underdetermined, as there are many programs

that will produce the correct observation sequence. Since it is challenging to identify whether
a synthesized program is semantically equivalent to the ground-truth program from which the
observation data was generated—especially since this generating program may be a black box—we
define a score function to approximately measure closeness to the ground-truth.

4 SYNTHESIS ALGORITHM

We now give detailed descriptions of the steps of our algorithm introduced in Section 2. We focus
on Steps 3 and 4—update function synthesis and cause synthesis—since the object perception and
tracking steps use more standard techniques and are not a contribution of our work.

4.1 Step 1: Perception

For each observed grid frame 𝑂𝑖 ∈ {𝑂1, . . . ,𝑂𝑇 }, the perception step produces a set 𝑋𝑜,𝑖 of objects
present in the frame, as well as a set of object types T . Each object is a tuple ⟨𝑡, 𝑝, 𝑑⟩ of an object
type 𝑡 ∈ T , position 𝑝 , and data values list 𝑑 , where 𝑡 .𝑑𝑎𝑡𝑎 is either the empty set ∅ or the singleton
set composed of the field ⟨color, string⟩. No other data fields beyond the observable color field are
identified in this step. Latent data fields may be constructed in Step 4, upon which they are added
as a modification to the existing type.

Our current Autumn implementation actually uses two different object parsing algorithms and
runs the rest of the synthesis procedure on the result of each. The algorithm then returns the output
program from the first parsing for which synthesis succeeds.
The simplest of the two is called single-cell parsing, which identifies each colored cell in a grid

frame as an individual object. The set of object types is then the set of single-celled shapes each
with a particular fixed color observed across the grid frames. The other algorithm is calledmulti-cell
parsing, which identifies groups of adjacent cells with the same color as multi-celled objects. This
is necessary when the observed grid-frames contain groups of pixels that move together as single
objects, but when a frame contains multiple single-celled objects of the same color, this algorithm
runs the risk of interpreting them as one object when they are adjacent to each other.

Neither of the two object parsing algorithms is especially sophisticated, but they are sufficient to
demonstrate our approach on the benchmarks.

4.2 Step 2: Object Tracking

Object tracking pairs objects in one frame to corresponding objects in the next frame. A corre-
spondence 𝑚𝑡 is a binary relation over two sets of objects 𝑋𝑡 and 𝑋𝑡+1 from consecutive frames.
Intuitively, (𝑥1, 𝑥2) ∈𝑚𝑡 denotes that 𝑥1 and 𝑥2 are the same object; 𝑥 ∈ 𝑋𝑡+1 \ domain(𝑚) denotes
that 𝑥 was added in the transition; 𝑥 ∈ 𝑋𝑡 \ codomain(𝑚) denotes that 𝑥 was removed.
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Fig. 6. Update Function Synthesis, demonstrated on the Ice benchmark program. In the ground-truth model,

water particles are released from the cloud and move according to the nextLiquid update function when

dark blue in color (i.e. melted) and according to the nextSolid update function when light blue in color (i.e.

frozen). Clicking toggles the sun between gold to gray and the water particles between light and dark blue.

Each cell of the update function matrix contains a set of update functions that each describes the change

undergone by the object with object_id equal to the row index during a particular time step (column index). A

list of concrete update function matrices, with one update function per cell, is extracted via frequency-based

heuristic.
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The algorithm that constructs the correspondence relations is a heuristic that is based on the
assumption that objects are unlikely to move very far in a single time step. Hence, it attempts
to maximally assign objects in frame 𝑡 to their closest objects (by Manhattan distance) in frame
𝑡 + 1. Objects that remain unassigned by this proximity heuristic are deemed to have been added or
removed. The algorithm also ensures that no two objects in time step 𝑡 are mapped to the same
object in time step 𝑡 + 1, and vice versa.

4.3 Step 3: Update Function Synthesis

Having tracked the objects in the program through time in Step 2, Step 3 synthesizes an Autumn
expression, called an update function, that describes each object assignment, addition, or removal
in each mapping relation𝑚𝑖 . These update functions are stored in a matrix that we call the update
function matrix. We describe the construction of this matrix below.
From the sequence ®𝑋 = (𝑋1, . . . , 𝑋𝑇 ) of objects produced by Perception, let P denote a set of

unique object identifiers and 𝑖𝑑 (𝑥) : 𝑋𝑖 → P denote the mapping from objects to their unique
identifiers that has two properties: (a) if (𝑥𝑎, 𝑥𝑏) ∈ 𝑚𝑡 for some time 𝑡 , then 𝑖𝑑 (𝑥𝑎) = 𝑖𝑑 (𝑥𝑏), and
(b) if 𝑥𝑎 ∈ 𝑋𝑡 and 𝑥𝑏 ∈ 𝑋𝑡 are two distinct objects in the same timestep 𝑡 , then 𝑖𝑑 (𝑥𝑎) ≠ 𝑖𝑑 (𝑥𝑏).

Our goal is to construct an update matrix 𝑀 , where 𝑀𝑖,𝑡 is an Autumn expression defining
how an object 𝑥 ∈ 𝑋𝑡 with 𝑖𝑑 (𝑥) = 𝑖 transitions between time-steps 𝑡 and 𝑡 + 1. We will use the
shorthand𝑀𝑥,𝑡 to mean𝑀𝑖𝑑 (𝑥),𝑡 . Specifically,𝑀 is a |P | × (𝑇 − 1) matrix, where each row contains
the sequence of update functions undergone by the object with 𝑖𝑑 corresponding to that row. To
construct the update matrix, our method first constructs an abstract update matrix �̂� , where �̂�𝑥,𝑡

is a set of candidate Autumn expressions such as moveLeft and nextLiquid, all of which denote
object transformations. �̂� is constructed such that each expression in �̂�𝑥,𝑡 is consistent with ®𝑋 .
Formally, let L denote a set of Autumn expressions provided as input by the user to the algorithm,
then �̂�𝑥,𝑡 = {𝑓 | 𝑓 ∈ L, (𝑥, 𝑓 (𝑥)) ∈𝑚𝑡 } ∪𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝑥,𝑡 . The final term of 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝑥,𝑡 accounts for
objects added or removed in a particular timestep.

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝑥,𝑡 =

{
{addObj}, 𝑥 is added at time 𝑡
{removeObj} 𝑥 is removed at time 𝑡

4.3.1 Update Function Filtering. Our ultimate aim is to pair update functions with associated
triggering events to generate on-clauses. Prior to this, the abstract update matrix �̂� , which describes
many possible programs, must be concretized into a concrete update matrix. A concrete update
function matrix𝑀 is a “filtering” of an abstract update matrix �̂� in the sense that𝑀𝑥,𝑡 ∈ �̂�𝑥,𝑡 .

There are combinatorially many concrete matrices corresponding to any given abstract update
function matrix, so we follow a set of heuristics to filter and sort the possible matrices. The heuristics
are somewhat involved, but in this section, we provide the reader a sense of the main ideas behind
them. The heuristics fall into four categories: (1) local filtering, (2) temporal filtering, (3) type
consistency, and (4) type update function frequency.

Local filtering corresponds to local heuristics that are applied independently to every cell in �̂� to
remove low-probability update functions. Temporal filtering analyzes individual objects over time
and prioritizes update functions that are consistent with what has happened at other times. This is
particularly relevant for objects that undergo update functions such as moveNoCollision since it
is often ambiguous whether the object is actually stationary (i.e. undergoing the update function
prev obj) or is attempting to move but is blocked by a collision (i.e. undergoing moveNoCollision).
When an object is not moving, the fact that it was moving in other time steps makes it more likely
that a moveNoCollision function was actually involved, compared to if there was not such a pattern.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 56. Publication date: January 2023.



Combining Functional and Automata Synthesis to Discover Causal Reactive Programs 56:15

The next two categories of heuristics, type consistency and type update function frequency both
build on the intuition that the algorithm should prioritize update functions that occurmore frequently
in �̂� across all rows of the abstract matrix with the same object type. The idea is that selecting more
frequent update functions will allow the generated code to “maximally share” update functions,
resulting in fewer on-clauses for the final program. These heuristics are both illustrated in Figure 6.
Before we define type consistency and type update function frequency filtering, we introduce

some notation. First, all objects in the program are grouped by type, so Γ(𝑥) is the type of object
𝑥 . In most cases, the type will correspond to the object type defined earlier, but for objects that
change color over time, the synthesizer may introduce distinct types for their different forms. For
each type, we define an ordering among the update functions corresponding to that type as follows.
Let 𝑎, 𝑏 ∈ �̂�𝑥,𝑡 be two update functions; then 𝑎 ≤𝜏 𝑏 if and only if 𝑐𝑜𝑢𝑛𝑡𝜏 (𝑎) ≤ 𝑐𝑜𝑢𝑛𝑡𝜏 (𝑏) where:

𝑐𝑜𝑢𝑛𝑡𝜏 (𝑢) =
∑︁

𝑡 ∈𝑇,𝑥 ∈P∧Γ (𝑥)=𝜏
1�̂�𝑥,𝑡

(𝑢)

where 1�̂�𝑥,𝑡
(𝑢) is an indicator function producing a value of 1 if 𝑢 ∈ �̂�𝑥,𝑡 and 0 otherwise.

Based on this type-based ordering, we now define the type consistency requirement that all our
concrete update matrices should satisfy. A matrix𝑀 is type consistent if it satisfies the following:

∀𝑥,𝑦 ∈ P, 𝑡𝑥 , 𝑡𝑦 ∈ 𝑇 s.t. Γ(𝑥) = Γ(𝑦) = 𝜏 . 𝑎 = 𝑀𝑥,𝑡𝑥 ∧ 𝑏 = 𝑀𝑦,𝑡𝑦 ∧ 𝑎 ≠ 𝑏

→ (𝑎 = 𝑠𝑢𝑝≤𝜏
(�̂�𝑥,𝑡𝑥 ) ∧ 𝑏 ∉ �̂�𝑥,𝑡𝑥 ) ∧ (𝑏 = 𝑠𝑢𝑝≤𝜏

(�̂�𝑦,𝑡𝑦 ) ∧ 𝑎 ∉ �̂�𝑦,𝑡𝑦 )
In other words, type consistency enforces that all objects of the same type apply the same update

function at every time step, with the exception that some object 𝑥 may be different from the others
if the update function that was chosen by others is not available for 𝑥 at a given time step. In
that case, 𝑥 must chose the best update function available to it relative to the order defined earlier
(𝑠𝑢𝑝≤𝜏

(�̂�𝑥,𝑡𝑥 )).
In the final step, Type update function frequency filtering, we first eliminate any matrix that

unnecessarily uses any update function not among the top two based on the type update function
ordering. More formally if 𝑡𝑜𝑝𝑡𝑤𝑜𝜏 (�̂�) returns the top two update functions based on the type
update function order for a given type 𝜏 and a given matrix �̂� , then we filter away any matrix𝑀
that does not satisfy:

∀𝑥 ∈ P, 𝑡 ∈ 𝑇,𝑀𝑥,𝑡 ∈ 𝑡𝑜𝑝𝑡𝑤𝑜𝜏 (�̂�) ∨𝑀𝑥,𝑡 = 𝑠𝑢𝑝≤𝜏
(�̂�𝑥,𝑡 )

The matrices that pass this filtering are then sorted based on the partial order defined below. Let
𝑀𝑎 and𝑀𝑏 be filterings of an abstract matrix �̂� . Then,𝑀𝑎 ≤ 𝑀𝑏 iff

∀𝑥 ∈ P, 𝑡 ∈ 𝑇 .𝑀𝑎
𝑥,𝑡 ≤𝜏 𝑀

𝑎
𝑥,𝑡 where 𝜏 = Γ(𝑥).

The end result of update function filtering is a list of update function matrices. All later steps of
the algorithm are run independently on each of these candidate matrices until synthesis succeeds.

4.4 Step 4: Cause Synthesis

By this stage in the algorithm, the object types, the object instances, and the possible update
functions undergone by each object at every time have been identified. Remaining to be synthe-
sized are the event predicates associated with the update functions in on-clauses, and potentially
latent variables. At a high level, this step enumerates through concrete update function matrices
𝑀1, 𝑀2, . . . , 𝑀𝑛 , and searches for events that could have triggered each update function, including
trying to synthesize latent variables if necessary for these events to exist. If this procedure succeeds
for a given concrete matrix, the overall algorithm terminates, returning the final program. If it fails
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on the current concrete matrix, it is repeated on the next concrete matrix until success or until the
end of the list is reached, which indicates overall synthesis failure.
To formalize the cause synthesis problem, we introduce the concepts of an update function

trajectory, event trajectory, and amatch between instances of the two. This step assumes that objects
that belong to the same object type are controlled by the same set of on-clauses—if two objects of
the same type both undergo moveLeft then a single event/on-clause was the cause. In contrast,
if two objects undergo moveLeft and belong to different types, the method must synthesize a
different event associated with each one. Thus, we synthesize events by enumerating through the
object types and finding an event for each distinct update function that appears across objects of
that type. Since this step of the algorithm is applied to each type independently, for convenience
we shall assume that𝑀 contains objects of only a single type 𝜏 .

4.4.1 Event Space. The event space E is composed of conjunctions and disjunctions of a finite set
of atomic events. There are two kinds of atomic events: global events and object-specific events.

Definition 4.1 (Global Event). A global event is a predicate over the program state, and may switch
between occurring and not occurring as the program state evolves. Examples include user events
such as clicked, clicked obj1, and left as well as object contact events like intersects obj1 obj2

and adjacent obj1 obj2.

Definition 4.2 (Object-Specific Event). An object-specific event is a predicate on a single object. For
example, obj.color == "red". Object-specific events are used to apply update functions selectively
to subsets of objects (those that make the predicate true) of a particular type.

The event trajectory for an event 𝑒 ∈ E is its sequence of true/false values over time.

Definition 4.3 (Event Trajectory). For an event 𝑒 ∈ E, the event trajectory 𝐸𝑥,𝑡 is constructed
according to the following cases:

(1) Case 1: 𝑒 is a global event. For all 𝑥 , i.e., independent of 𝑥 :

𝐸𝑥,𝑡 =

{
1 𝑒 is true at time 𝑡,
0 otherwise.

(2) Case 2: 𝑒 is an object-specific event.

𝐸𝑥,𝑡 =

{
1 if e is true for object 𝑥 at time 𝑡,
0 otherwise.

4.4.2 Update Function Trajectory. Informally, with respect to an update matrix 𝑀 , the update
function trajectory of an update function 𝑢 is a matrix where each element is 0, 1 or 1

2 to indicate
whether 𝑢 took place (1) or not (0) for object 𝑥 at time 𝑡 . The value 1

2 represents uncertainty,
indicating that 𝑢 may have taken place but its effect could have been overridden by another update
function. As described in Section 2.2, an update function can be overridden when there are other
on-clauses that follow it in the Autumn program that are triggered at the same time. For synthesis,
there is a choice of how to order on-clauses. With a similar rationale to the ordering of concrete
matrices in the previous Section, our method orders update functions according to the ordering
relation ≤𝜏 , which favors update functions that occurred more frequently.
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Definition 4.4 (Update Function Trajectory). Given a concrete update matrix 𝑀 and an update
function 𝑢, the update function trajectory𝑈𝑥,𝑡 is defined as:

𝑈𝑥,𝑡 =


1 if𝑀𝑥,𝑡 = 𝑢,
1
2 if𝑀𝑥,𝑡 = 𝑢 ′ where 𝑢 ′ ≠ 𝑢 and 𝑢 ≤𝜏 𝑢

′

0 otherwise.

In other words, more frequent update functions appear earlier in the Autumn program than less
frequent ones, and hence are overridden by those less frequent update functions when both are
triggered at once.

4.4.3 Matching. Finally, an event is said to match an update function if their corresponding event
and update function trajectories are the same over all objects at all times. If there is any ambiguity
due to the overriding behavior, we tend towards being permissive in calling it a match. That is, the
method counts any instance where𝑈𝑥,𝑡 is 1

2 as a match, regardless of the event.

Definition 4.5. An event trajectory 𝐸 matches an update function trajectory 𝑈 if for all 𝑥, 𝑡 ,
𝐸𝑥,𝑡 = 𝑈𝑥,𝑡 , where for 𝑎, 𝑏 ∈ {0, 1, 12 }, 𝑎 = 𝑏 is true if 𝑎 or 𝑏 is 1

2 , and otherwise defined in the
standard way.

If a matching event trajectory cannot be found for a particular update function trajectory, the
algorithmmoves on to the automata synthesis step, which attempts to augment the existing program
state in such a way that a matching event may be written.

4.5 Step 4b: Automata Synthesis

Failure to find an event trajectory that matches an update function trajectory suggests that the
domain of the event—the program state and known objects—may be missing something. That is,
there may be some latent state, which if known, would allow our method to discover a matching
event. The automata synthesis step discovers this latent state.
The input to the automata synthesis step is a set of update function trajectories, one for each

unmatched update function from the previous step. The goal of the automata synthesis procedure
is to construct the simplest latent state automaton that enables us to write matching latent-state-
based event predicates. For ease of exposition, we will begin by describing the automata synthesis
procedure for the scenario in which there is exactly one unmatched update function for which a
latent-stated-based predicate must be constructed. We will then describe the extension to the more
general scenario of multiple unmatched update functions.

4.5.1 Problem Formulation. To start, we formulate the problem of latent state synthesis within the
classic formulation of automata synthesis given input-output examples, which aims to determine the
minimum-state automaton that accepts a given set of accepted input strings (positive examples) and
rejects a given set of rejected input strings (negative examples). In our scenario, we can construct
positive and negative input “strings” from the sequence of program states.
To construct positive and negative examples, we consider the set of prefixes—sub-sequences

of the program-state sequence, starting from the first position—that has, as their last element,
a program state where the optimal co-occurring event is true. The optimal co-occurring event is
the event that co-occurs with the update function in question and has the minimum number of
false-positive times, i.e. times when the event is true but the update function does not occur. This
event is selected from a user-defined co-occurring event space, which contains a subset of events
more likely to be co-occurring triggers than the arbitrary events in the full event space. In the Mario
example, the optimal co-occurring event is clicked. Our method partitions the set of program state
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Fig. 7. Bird’s-eye view of the automata synthesis problem, using the example of the Mario program. The

bullet addition update function, indicated by addObj, does not have a matching trigger event. The closest

event is clicked, which co-occurs with bullet addition but also is true at false positive times. We seek a latent

variable that is true at one set of times (accept values) and false at another set of times (reject values), so

that the conjunction of clicked and that latent variable perfectly matches addObj’s times. As shown in the

solution, this latent variable initially has value zero, and changes to one then two on agent-coin intersection,

and changes back down on clicks.

sequence prefixes into those that end with a program state in which the update function took place
and those in which it did not. The former set is the set of positive examples and the latter is the set
of negative examples for use in automata synthesis.
This construction of positive and negative input strings is motivated by the fact that, if there

existed a latent state automaton that fit this specification, then the event

co_occurring_event && (latentVar in [/* accept values */])

would be a perfect match for the update function. This is because the co-occurring event is true
during a set of false positive times with respect to the update function trajectory, and the latent
automaton is in rejecting states at exactly those times (since those times correspond to the rejected
program state prefixes). Thus, finding such an automaton would mean we would have an event
that matches the update function under consideration.

4.5.2 Multiple unmatched update functions. The general setting has multiple unmatched update
functions. In this scenario, each unmatched update function specifies its own inductive automata
synthesis problem—a set of positive and negative input strings—that if solved will give rise to a
matching latent-state-based predicate.

One solution to this “multi-automata” synthesis problem is to construct a distinct latent automa-
ton (variable) that satisfies each update function. However, a smaller number of latent variables
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Fig. 8. Three variant methods for automata synthesis, shown for the Gravity I benchmark program. The

white block move left, right, up, or down depending on the button last clicked. The transition label left
abbreviates (clicked leftButton), etc.
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is often sufficient to explain all the update functions. In fact, the product of all the individual
update function automata is a single automaton that satisfies all specifications, up to changing
the accept states for each update function. However, taking the product of the simplest automata
satisfying individual update functions—where we define simplest as that automaton with the fewest
states—does not necessarily produce the simplest product automaton. This is because it is possible
that larger automata for individual update functions will multiply to form the minimal product
automaton. Thus, optimizing each automaton individually and multiplying is not sufficient.

We now discuss three distinct algorithms for solving this inductive automata synthesis problem:
Full Sketch, Divide-and-Conquer Sketch, and Heuristic. Our current implementation synthesizes a
single latent state automaton that satisfies all unmatched update functions within each object type,
as opposed to a single automaton for the entire program (i.e. across all object types), which mirrors
the latent state structure found in most real Autumn programs in practice.

4.5.3 Algorithm 1: Full Sketch. In the Full Sketch approach, the complete multi-automata synthesis
problem (for each object type) is encoded as a Sketch [Solar-Lezama 2013] problem. In other
words, Sketch is tasked with identifying the minimal automaton that accepts each update function’s
language, as specified by the observed examples, up to changing just the accept states. As an example,
consider the Gravity I program shown in Fig. 4 and Fig. 8. The white block continuously moves left,
right, up, or down depending on which of the four colored buttons was last pressed. A matching
event cannot be found for any of the four update functions moveLeft, moveRight, moveUp, or moveDown,
so their update function trajectories are fed to the Sketch solver to produce the 4-state automaton
shown in Fig. 8a. This new latent variable then allows a matching predicate to be written for all four
update functions: true && latentVar == 1, true && latentVar == 2, true && latentVar == 3, and
true && latentVar == 4, where the optimal co-occurring event is true.

4.5.4 Algorithm 2: Divide-And-Conquer Sketch. Rather than attacking the full multi-automata
synthesis problem, Divide-And-Conquer Sketch tasks Sketch with solving each update function’s
automata synthesis problem individually, and then combines those solutions together via product.
The intuition behind this approach is that synthesizing an automaton matching all update functions
at once may face scalability challenges, but finding an automaton matching a single update function,
which is likely smaller, may be easier. As described previously, the smallest automaton satisfying
a single update function may not give rise to the smallest product, so the Divide-and-Conquer
algorithm identifies a small set of automata matching each update function instead. It then takes the
product over all update functions’ automata sets, and computes the minimal automaton from that
product space. We illustrate this algorithm again with the Gravity I example (Fig. 8b). The algorithm
first identifies a set of automata that solve the automata synthesis problems corresponding to the
four unmatched update functions. Note that each of these automata have just two states instead of
the full 4-state solution found in the Full SAT approach. Next, it computes all automata products
over these four automata sets, and takes the minimal automaton from this product set, which is the
4-state solution seen previously.

4.5.5 Algorithm 3: Heuristic. Despite the simplicity of the Sketch-based formulations of automata
synthesis, their scalability to problem settings with large automata is unclear, due to the scaling
limitations of SAT solvers. As such, we also implemented a heuristic algorithm that synthesizes an
automaton satisfying a set of update function trajectories via a series of greedy updates to an initial
automaton (Fig. 8c). At a high level, this approach begins with an automaton with a small number of
states, and repeatedly splits states into two based on a heuristic related to the search for transition
events. More precisely, the algorithm begins by searching for transition events (edges) that result
in an automaton that produces a particular initial state sequence that has few distinct states. If
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the transition search fails, one of the original states is split into two, and the transition search is
repeated. This process continues until a satisfying automaton is identified. Our heuristic algorithm
bears some similarity to counterexample-guided abstraction refinement, in that it iteratively refines a
specification in response to errors while trying to satisfy it; see Appendix A.2 for further detail.

4.5.6 Non-Determinism Handling in AutumnSynth. Having described the final cause synthesis
step, we briefly comment on support for writing nondeterministic programs in Autumn. Autumn
provides a library function called uniformChoice, which selects one element uniformly at random
from a non-empty list. Using this function, many interesting causal probabilistic Autumn programs
can be written. However, inferring the probability distribution described by a probabilistic Autumn
program adds a new level of complexity, so our current synthesis algorithm is focused only on
synthesizing deterministic Autumn programs.

We make one minimal, small-scoped exception to this, however: We allow use of uniformChoice
at the update function level of an on-clause, but not at the event level. Explicitly, if no deterministic
Autumn program is found by the synthesizer, which means cause synthesis fails on every concrete
update function matrix𝑀 identified through the update function synthesis step, the algorithm will
try to construct new concrete matrices using uniformChoice-based update functions. Currently, the
algorithm only allows these random update functions to have the form addObj (uniformChoice [

\* list of positions *\ ]). For example, it is possible that the set of possible update functions
in the unfiltered matrix for a certain object 𝑥 at a certain time 𝑡 is

𝑀𝑥,𝑡 = { addObj (Bullet (Position 5 5)),
addObj (Bullet (uniformChoice (map (-> obj obj.origin) objects))) },

if (5, 5) is the location of an object in the list. Hence, a matching event might be found for a
uniformChoice-based update function even if not found for deterministic update functions, so this
limited form of nondeterminism in Autumn programs is supported by the synthesizer.

4.6 Code Generation

We implemented the Autumn language and AutumnSynth algorithm in Julia. The interpreter
and library functions of the language are expressed in about 1,600 lines of Julia code, while the
synthesizer is about 18,000 lines. To construct the correct Autumn syntax describing the object
types T , initial state 𝑋0, and transition function 𝐹 determined by AutumnSynth, we first express
the stream definitions as follows. For each object type 𝑡 ∈ T , we define a list variable where the
init value contains the values of all objects 𝑥 ∈ 𝑋0 with type 𝑡 , and the next value is simply the
default prev expression (i.e. synthesized Autumn programs do not use the next clause, keeping
all updates in on-clauses instead). After these stream definitions, the on-clauses are expressed in
order from most-frequent to least-frequent for each object type 𝑡 ∈ T . Precisely, for each on-clause
𝑜𝑖 in 𝐹 (𝐻 ) = 𝑜𝑚 (...(𝑜2 (𝑜1 (𝑛𝑒𝑥𝑡 (𝐻 ), 𝐻 ), 𝐻 ) . . . ), 𝐻 ), the on-clause 𝑜𝑖 is the 𝑖th on-clause to appear
in the Autumn code when read from top to bottom. These stream definitions and on-clauses are
inserted following the standard grid size definition, background definition (we currently change all
background colors to white, for simplicity), and definitions of the object types T at the start of the
program to form the complete synthesized output.

5 EVALUATION

To evaluate AutumnSynth, we constructed a suite of 30 Autumn programs, called the Causal
Inductive Synthesis Corpus (CISC), and also evaluated against a preexisting corpus of grid-world
video games written in Python. We evaluated the following questions:

(1) How expressive is the Autumn language for modeling grid world environments?
(2) Does the AutumnSynth algorithm scale to interesting programs and long input traces?
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(3) Are the synthesized programs able to generalize to new scenarios as opposed to just memo-
rizing the input trace?

5.1 Benchmarks

5.1.1 The Causal Inductive Synthesis Corpus. Descriptions of each of the 30 benchmark programs
in the Causal Inductive Synthesis Corpus are given in Fig. 12 in the Appendix. Of these models, 24
possess latent state and hence require the automata synthesis step of our algorithm, whereas the
remaining six models do not possess latent structure and thus only test the functional synthesis
component. The largest latent automaton present across the benchmark models has 11 states and
20 edges (Count V in the figure), while the largest number of latent automata in a single benchmark
is four (Water Plug), where there is one global variable and three object types that each contain
one object-specific latent field.

5.1.2 The Exploration, Modeling, and Planning Agent Corpus. In addition to the CISC benchmark,
we also ran the AutumnSynth algorithm on a subset of the Exploration, Modeling, and Planning
Agent (EMPA) benchmark suite [Tsividis et al. 2021]. The EMPA suite consists of 27 distinct grid-
world games, each of which contains two to five levels, making for a total of 90 different levels
across all games. In our evaluation, we used the first level of each of the 27 games, so our final
evaluation set contained 27 EMPA programs. Unlike CISC, EMPA models are not natively written
in Autumn, which makes them a suitable benchmark for measuring how effective Autumn is at
capturing general grid-world dynamics. Some EMPA stills are shown in Fig. 13 in the Appendix.

5.2 Scalability and Performance

We now discuss our experiments on CISC and EMPA evaluating the scalability of AutumnSynth.

5.2.1 CISC. For each of the 30 CISC programs, we manually constructed an input sequence of user
actions and corresponding observations. Our objective when curating these input traces was to
demonstrate all of the dynamics encoded by the model so that the synthesizer would be forced to
compute a solution capturing all aspects of the grid environment. We ran the three AutumnSynth
variants on these manually curated input traces for each of the 24 latent-state-containing programs,
and ran just the Heuristic on the 6 non-latent-state-based programs since the three algorithms
differ only in the latent state synthesis step. For the purpose of this section, we declared a success
on a benchmark program if the synthesizer produced an Autumn program that generated the
input sequence of observations given the input sequence of actions, even if the program was not
semantically equivalent to the ground-truth benchmark. The results are shown in Fig. 9.

Notably, all three algorithm variants—Sketch, D&C Sketch, and Heuristic—are able to synthesize
a program for most of the benchmark problems, with the Heuristic algorithm solving the most
with 27 out of 30. The runtimes for the Heuristic algorithm range from just two minutes for some
of the smaller benchmarks that have few on-clauses and short input traces (e.g. Disease with seven
on-clauses and a 22-frame input trace) to up to 9 to 13 hours for larger benchmarks with many
on-clauses or very long traces (e.g. Mario with 16 on-clauses or Sokoban with a 243-frame input
trace). Unlike the Heuristic, both of the Sketch-based versions of the algorithm time out after 24
hours on several of the benchmarks. This is because those programs require large latent automata
that in particular have many hidden states, which are additional accept states corresponding to a
state-based update function. We provide further analysis of this result in Appendix A.1.1.

The fact that AutumnSynth is able to synthesize most of the CISC benchmarks, including those
with many on-clauses and large latent automata, as well as from fairly long input traces with
hundreds of frames, demonstrates the scalability of the algorithm.
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 Ants 0 0 0 3 17 24 177.4 207.3 417.3 100% 
Chase 0 0 0 7 27 34 11.3 14.0 21.4 100% 

Magnets 0 0 0 12 183 41 113.2 248.9 273.8 23.9% 
Space Invaders 0 0 0 12 55 50 820.7 849.5 ⊥ 100% 

Sokoban 0 0 0 9 243 43 521.8 836.7 1123.5 73.3% 
Ice 0 0 0 10 27 45 3.3 3.8 5.9 100% 
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Lights 1 2 2 4 24 36 2.0 2.5 5.3 100% 
Disease 1 2 2 7 22 31 2.3 3.3 4.0 100% 
Grow 1 2 2 11 96 49 411.1 425.3 529.2 100% 

Grow II 1 2 2 11 96 - × × × × 
Sandcastle I 1 2 2 7 37 33 3.6 3.8 4.2 100% 
Sandcastle II 1 2 2 7 37 - × × × × 

Bullets 2 4 12 16 53 56 10.7 21.6 ⊥ 100% 
Gravity I 1 4 12 9 19 38 2.3 2.4 3.5 100% 
Gravity II 2 4 12 14 24 50 3.2 3.3 6.0 100% 
Gravity III 1 9 24 32 27 83 2.1 2.9 ⊥ 100% 
Gravity IV 1 8 56 17 43 54 2.7 3.2 7.3 100% 

Count I 1 3 4 6 22 31 2.1 2.2 3.8 100% 
Count II 1 5 8 10 39 39 2.3 2.7 11.0 100% 
Count III 1 7 12 14 69 47 2.4 ⊥ ⊥ 100% 
Count IV 1 9 16 18 109 55 2.8 ⊥ ⊥ 100% 
Count V 1 11 20 22 149 63 3.5 ⊥ ⊥ 100% 

Double Count I 1 5 8 12 94 43 2.6 3.2 42.0 100% 
Double Count II 1 9 16 20 156 59 3.5 ⊥ ⊥ 100% 

Wind 1 3 4 9 23 43 24.1 23.8 31.1 100% 
Paint 1 5 5 10 27 39 2.3 2.6 11.7 100% 
Mario 2 3 4 16 81 59 168.1 200.1 241.8 84.6% 

Water Plug 4 3 6 10 68 53 760.7 ⊥ ⊥ 100% 
Mario II 2 4 6 16 81 - × × × × 

Coins 1 5 10 16 168 57 68.7 ⊥ ⊥ 74.8% 
 

Fig. 9. Results from running AutumnSynth on the CISC benchmark suite. ⊥ indicates timeout after 20 hours.

The column header abbreviations signify the following: # of A.→ # of Automata, Max # of A. S.→Max. #

of Automaton States, Max # of A. T.→Max. # of Automaton Transitions, # of O.C.→ # of On-Clauses. We

further note that the output length was computed on the Heuristic-synthesized programs, and that the test

set accuracies were computed by running the Heuristic-synthesized programs as well. This is because the

Heuristic algorithm produced the most generalizable programs, though the Sketch algorithm matched it for

the benchmarks that it also solved. See Appendix A.1.6 for additional evaluation details.

5.2.2 EMPA. As in the CISC evaluation, we manually constructed an input observation trace for
each of the 27 programs in the EMPA suite and ran the AutumnSynth algorithm on those traces.
Unlike CISC programs, EMPA games have a higher frame rate (20 frames per second versus 3 frames
per second) that results in longer input traces and are further played on grids with significantly
larger dimensions (e.g. 300 pixels by 110 pixels for the Aliens game versus the 16 pixels by 16
pixels of most CISC games), both of which cause longer synthesis runtimes. In addition, stylistic
differences between EMPA games and CISC games required us to slightly modify the event and
update function spaces used in the AutumnSynth algorithm in order to synthesize Autumn
programs modeling EMPA environments, as well as modify some of the lower-level heuristics used
in the algorithm (e.g. for object perception, object mapping, update function synthesis, etc.). We
describe these modifications in greater detail in Appendix A.1.2.

In particular, one difference between the different corpora is that the vast majority (19 out of 27)
of the EMPA games are non-deterministic, compared to very few of the CISC programs. Further,
the type of random behavior present in EMPA is different from that in CISC: While the only
non-determinism in CISC appears at the update function level (i.e. update functions may use the
uniformChoice function but all trigger events in on-clauses are deterministic), EMPA programs also
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1 Antagonist 0 0 0 4 162, 8.1s 48 54.1m N/A N/A N.D. 
2 Avoid George 0 0 0 6 100, 5.0s 48 1.3h N/A N/A N.D. 
3 Bees and Birds 0 0 0  66, 3.3s 41 12.9m N/A N/A N.D. 
4 Boulder Dash 0 0 0 - 390, 18.5s - ⊥ N/A N/A - 
5 Butterflies 0 0 0 3 193, 9.7s 193 1.6h N/A N/A N.D. 
6 Chase 0 0 0 - 31, 1.6s - × N/A N/A - 
7 Closing Gates 0 0 0 3 154, 7.7s 44 1.4h N/A N/A 97.5% 
8 Explore/Exploit 0 0 0 2 222, 11.1s 32 9.1m N/A N/A 100% 
9 Helper 0 0 0 4 267, 13.4s 41 48.9m N/A N/A N.D. 
10 Preconditions 0 0 0 3 83, 4.2s 41 4.3m N/A N/A 100% 
11 Push Boulders 0 0 0 - 211, 10.6s - × N/A N/A - 
12 Relational 0 0 0 5 318, 15.9s 44 45.5m N/A N/A 100% 
13 Sokoban 0 0 0 3 203, 10.1s 37 19.0m N/A N/A 100% 
14 Surprise 0 0 0 6 211, 10.6s 53 83.0m N/A N/A N.D. 
15 Water Game 0 0 0 5 97, 4.9s 48 14.5m N/A N/A 98.9% 
16 Zelda 0 0 0 4 142, 7.1s 46 11.2m N/A N/A N.D. 
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17 Aliens 3 14 20 37 318, 15.9s 113 15.7h ⊥ ⊥ N.D.	
18 Bait 1 2 1 5 131, 6.6s 50 19.5m 38.8m 23.9m 100% 
19 Corridor - - - - 170, 8.5s - × × × - 
20 Frogs - - - - 274, 13.7s - ⊥ ⊥ ⊥ -	
21 Jaws 2 2 1 10 95, 4.8s 62 57.2m	 50.9m	 1.0h	 N.D.	
22 Lemmings 3 4 12 17 263, 13.2s 80 38.8h ⊥ 29.4h N.D.	
23 Missile Command - - - - - - × × × N.D. 
24 My Aliens 2 3 3 11 127, 6.4s 56 1.6h 1.5h	 2.2h	 N.D. 
25 Plaque Attack 3 11 11 35 235, 11.8s 112 12.1h ⊥ ⊥ N.D. 

 26 Portals 2 2 2 14 245, 12.3s 84 9.2h 9.7h	 9.5h N.D.	
 27 Survive Zombies 2 7 7 19 138, 6.9s 78 2.7h ⊥ ⊥ N.D. 
 

Fig. 10. Results from running AutumnSynth on the EMPA benchmark suite. ⊥ indicates timeout after 40

hours, and N.D. indicates the program is non-deterministic, making it challenging to perform a test set

accuracy experiment (see Section 5.3.2). The column header abbreviations mean the same as in Fig. 9.
∗
See

Appendix A.1.5 for note on Survive Zombies.

have a few kinds of dynamics triggered by random events. For example, enemy objects in EMPA
shoot out rockets with some probability at every time step, a feature not supported by the original
AutumnSynth algorithm tuned to the CISC benchmark. To account for this difference, we slightly
modified the cause synthesis step of AutumnSynth to assign a single, arbitrary random event to
certain types of update functions (e.g. bullet addition) for which a deterministic event cannot be
found, instead of synthesizing latent state to explain those update functions. The modifications
of the algorithm to better suit the new domain of EMPA programs are detailed in the Appendix.
We emphasize that while AutumnSynth is flexible enough to handle different domains, such
lower-level, domain-specific tweaks are generally needed.
The results of our evaluation are shown in Fig. 10. We find that AutumnSynth synthesizes a

solution for 21 out of the 27 EMPA programs. As in the CISC evaluation, we run all three variants
of the AutumnSynth algorithm on the latent-state-based benchmarks—which compose 9 out
of the total 27—while only running the Heuristic version on the non-latent-state-based models.
Since the majority of EMPA benchmarks display nondeterministic behavior, we had to manually
inspect those programs to check that they matched the given input trace instead of performing
an automatic check. Given the differences with respect to the original CISC programs that helped
guide the development of the algorithm, it is notable that AutumnSynth manages to synthesize
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 Model Metrics 1 Trace 2 Traces 3 Traces 4 Traces 5 Traces 6 Traces 7 Traces 

 

         

CI
SC

 
Magnets 

Trace Len. 183 325      
Runtime 32.8m 4.7h      
Accuracy 23.9% 100%      

O.C. / A.T. 12 / 0 12 / 0      
         

Mario 

Trace Len. 81 152 198     
Runtime 36.6m 3.1h 13.8h     
Accuracy 84.6% 87.1% 100%     

O.C. / A.T. 16 / 4 18 / 6 20 / 6     
         

Coins 

Trace Len. 168 235 308 393 481 568 676 
Runtime 13.9m 35.1m 79.2m 3.0h 5.6h 9.6h 15.8h 
Accuracy 74.8% 77.5% 80.2% 82.8% 88.7% 96.0% 100% 

O.C. / A.T. 16 / 8 18 / 10 20 / 12 22 / 14 24 / 16 26 / 18 28 / 20 

 / 

         

EM
PA

 

Water Game 

Trace Len. 97 140      
Runtime 7.3m 10.9m      
Accuracy 98.9% 100%      

O.C. / A.T. 4 / 0 5 / 0      
 

Fig. 11. Results from running AutumnSynth on multiple traces taken from a sample of CISC and EMPA

benchmarks (O.C. / A.T. means number of on-clauses/automata transitions). The new on-clauses learned for

Coins correspond to automata transitions impossible to learn with fewer traces; see Section 5.3.1 for details.

models of many of the EMPA games, including some with very large numbers of on-clauses and
latent states, such as Aliens, which has 14 latent states and 37 on-clauses.

5.2.3 Runtime Analysis. AutumnSynth scales roughly linearly with the number of non-latent-
state-based on-clauses in the program, assuming that event search for each on-clause requires the
average depth of exploration of the event space. In programs with latent state, however, event
search can become a major bottleneck. This is due to the fact every state-based update function
will require an exhaustive search of the entire event space before resolving that additional latent
state is required. One future solution to this is to exploit the large degree of parallelism afforded by
the decomposability of the algorithm. Specifically, event search may be performed independently
and thus in parallel for each update function rather than sequentially, which is likely to markedly
improve performance. Another bottleneck is automata synthesis: While the heuristic synthesizer
is fast, the heuristics it uses may not apply to new scenarios, and the more generally-applying
Sketch-based algorithms do not scale well. Since AutumnSynth is agnostic to the underlying
automata synthesis algorithm used, we are optimistic these issues can be overcome by using more
sophisticated automata synthesizers.

5.3 Quality of Synthesized Models

Next, we describe our experiments that help quantify the quality of the programs synthesized by
AutumnSynth. Phrased differently, we are interested in verifying that the synthesized programs
generalize reasonably well from the given input trace, as it is generally always possible for an
inductive synthesis engine to simply produce a program that regurgitates the examples it was fed.
To measure the generalization performance of the synthesized programs, we perform two kinds of
experiments: (1) We construct new input traces from the benchmark programs and compute how
often the synthesized and benchmark programs produce the same output observation sequences on
these new traces, and (2) we run AutumnSynth on multiple input traces that are strung together,
to show that an exact semantic match to the ground truth can be synthesized given enough data.

5.3.1 CISC. For each CISC program, we constructed a test set of additional user action traces
and evaluated the synthesized and ground-truth programs on each trace. (For the three non-
deterministic models in CISC, we fixed a random seed to enable accurate comparison between the
programs over the test traces.) We measured the fraction of each new observation sequence until
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the frame where it diverged from the ground-truth observation sequence (i.e. 1 if the sequences
were exactly the same), and averaged these values to produce the percentages shown in the final
column of Fig. 9. All but four—Magnets, Sokoban, Mario, and Coins—of the synthesized programs
matched the corresponding ground-truth benchmark program on all of the test set traces. For
Magnets and Sokoban, the reason behind their divergence was that some details of the model
dynamics were not demonstrated in the input trace fed to the synthesizer. For example, a certain
kind of diagonal motion that the blue magnet object can undergo was simply not shown in the
input, so the synthesizer did not learn an on-clause describing it.
An incomplete input trace is also the reason that the Mario and Coins solutions generalized

differently, but for those benchmarks, it is actually impossible to show all the dynamics of the model
with just a single trace. Precisely, both the Mario and Coins models involved collecting coins that
can be used to shoot bullets. Since there is a finite number of coins, it is impossible to show in
one trace both that collecting all of the 𝑛 coins in the model allows the agent to shoot 𝑛 bullets
in a row before clicking does nothing, and also show that collecting 𝑘 < 𝑛 coins allows the agent
to shoot just 𝑘 bullets before clicking does nothing. Without this detail, the automata synthesis
algorithm will not produce the ground-truth automaton, so we construct a few independent traces
showing these dynamics. The AutumnSynth algorithm is trivially extended to take multiple traces
as input by concatenating the traces into a single long trace and informing the synthesizer of the
connecting times so it does not try to learn on-clauses describing those reset moments. We perform
this experiment for a subset of three of the four programs discussed, with results shown in Fig. 11.
It is clear that AutumnSynth scales to these extremely long inputs and produces the previously
elusive ground-truth programs.

5.3.2 EMPA. Unlike CISC, the majority of the EMPA benchmarks contain non-deterministic
behavior, and since the ground-truth programs are expressed in PyVGDL rather than Autumn,
we cannot easily fix a random seed to compare the ground-truth programs with their synthesized
Autumn counterpart on a set of test traces as was done for CISC. In addition, AutumnSynth does
not actually infer the correct underlying probability distributions in these models but rather aims
only to detect the presence of non-determinism, rendering attempts at exact, automatic comparison
ineffective (see Appendix A.1.2 for further details). Consequently, we only performed the test
set accuracy experiment for the few deterministic programs in the EMPA benchmark suite, with
results shown in Fig. 10. All but two of the synthesized deterministic programs exhibit perfect
generalization accuracy on the test traces. The Closing Gates program falls slightly below because
its given input trace did not demonstrate a few, very minor details of the model that rely on perfectly
timing arrow key presses within one-twentieth of a second, and hence are challenging to generate.
This can be fixed by performing a multi-trace experiment with added traces containing the missing
details (only a fraction of these details were demonstrated in the test set, due to the difficulty of
producing them). The Water Game program was similarly synthesized using an input trace that
did not show one small aspect of the model, though it was actually impossible to demonstrate
that aspect with just one trace (the agent object could not be killed by the lake and reach the win
position in a single run of gameplay). Rerunning AutumnSynth in the multi-trace setting with an
added trace demonstrating this aspect produces the desired program, as shown in Fig. 11.
Next, in lieu of a test set experiment for the non-deterministic programs, we provide a general

description of their quality. We first remark that the fact that the deterministic programs generalize
well is itself a signal of the non-deterministic programs’ quality since the synthesis algorithm is
very similar in each case. We note, though, that many EMPA games possess both win conditions
and lose conditions, which makes it impossible to demonstrate all conditions in a single trace. For
example, the model of how the moveable agent dies in a game often describes that intersecting just
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one type of enemy object causes the agent to die when in reality there are several enemy types
that cause agent death. This may be fixed by running the synthesizer with multiple traces, each
showing a different win or loss condition. Further, like in the CISC single-trace and deterministic
EMPA experiments, sometimes some details present in the ground-truth model were omitted when
creating the demonstration trace, so the synthesizer did not learn a model incorporating those. See
Appendix A.1.4 for a more detailed analysis of the quality of these EMPA programs. Importantly,
despite these limitations, these programs still represent impressive abstract compressions of the
information in the long frame sequences given as input.

As a final observation, we mention that we often made new traces in the multi-trace experiments
in the style of counterexample-guided synthesis (CEGIS): The synthesizer would produce an output
that was slightly incorrect given 𝑛 traces, so we would add an (𝑛 + 1)-th trace to the input to correct
this error, and then find that the newly synthesized program was still incorrect in some way, and
repeat this process until the desired program was produced. This compatibility of AutumnSynth
with CEGIS opens up interesting future directions related to online program synthesis.

6 RELATEDWORK

6.1 The Apperception Engine

The Apperception Engine [Evans et al. 2020] is the most closely related work to our own in terms
of motivation. Like AutumnSynth, the Apperception Engine aims to construct a causal theory of a
domain from perceptual data. The Apperception Engine synthesizes theories in Datalog∋: a variant
of Datalog extended with causal rules to capture causal dynamics. In their formulation, in order for
a theory in Datalog∋ to explain or “make sense” of data, it must not only be consistent with the data,
but also satisfy spatial, conceptual, static, and temporal unity conditions. These unity conditions
collectively act as an inductive bias that requires that all the objects and predicates within a theory
are connected or informative of one another, at least indirectly. Autumn, in contrast, is not a logic
programming language, and as a result, is less conducive than Datalog∋ to declaratively specifying
causal relationships. On the other hand, the unity conditions are satisfied by construction, either
by AutumnSynth or by the Autumn language itself.

The Apperception Engine contributes a new formalism rather than innovation in the synthesis
method; the synthesis problem is deferred entirely to an external solver. One consequence of this,
combined with the fact that the unity conditions need to be solved for, is limited scalability. For
example, Apperception takes 48 hours to synthesize a model of Sokoban from a sequence of 17
grid frames of 20 × 20 pixels. In contrast, AutumnSynth takes approximately 19 minutes on
Sokoban EMPA (189 grid frames, 130 pixels × 90 pixels) and 8 hours (243 grid frames, 16 pixels
× 16 pixels) on Sokoban CISC respectively—the runtime difference between CISC and EMPA is
due to CISC having a larger space of library components to search through than EMPA, which
did not require such a diverse search space due EMPA programs being generally more similar to
one another. Further, like Apperception, AutumnSynth can be trivially extended to impute and
retrodict missing observations in addition to prediction, by telling the synthesizer to ignore certain
time steps in the update function and event synthesis procedures (like in multi-trace synthesis).

6.2 Automated Game Playing

Guzdial et al. introduce a method [Guzdial et al. 2017] that synthesizes the “game engine” of
Super Mario Bros. in the form of if-else-rules, from observed image frames and a library of sprite
components. Within the active area of automated game playing [Levine et al. 2013], this work is
most distinctly related to our contribution in its motivation to discover an explicit world model
from observations. Their approach is greedy heuristic search over the space of programs using
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local syntactic modifications (e.g. rule addition or deletion). Aside from limitations of scalability,
the major distinction from AutumnSynth is that this approach does not discover latent state or
the types-structure of the program generally, and would be inapplicable to the majority of CISC.

6.3 The Abstraction and Reasoning Corpus (ARC)

AutumnSynth was directly inspired by the Abstraction and Reasoning Corpus (ARC), a popular
benchmark and position paper by Chollet [Chollet 2019b]. ARC was designed to help spur the
development of AI agents that can more effectively mimic human intelligence. Specifically, it targets
the human ability to generalize from small data to realize abstract theories, which can then be
used to reason about new scenarios. Each ARC problem displays a few pairs of colored grids,
where the first grid (input) and second grid (output) are related in a particular way. The goal is to
figure out the relationship between the input and the output grids, and apply it to a new input to
predict the correct output. ARC has generated great interest in the AI community, with some of the
best-performing solutions being program synthesis systems that model the theories as programs.
The Autumn language was designed to express similar kinds of intricate entity relationships

as in ARC, but augmented with time so they more closely resemble real observations. While the
running example we use in this paper is a video game and the EMPA benchmarks are all video
games, Autumn was designed more generally to express visually-simplified distillations of real-
world phenomena, like water causing plants to grow or wind-blowing snow (Water Plug and Wind
benchmarks in CISC). As in ARC, learning models of these grid domains requires the synthesizer
to identify complex dependencies between visual artifacts (and in the case of Autumn, non-visual
inventions)—an ability innate to humans but not machines—while temporarily abstracting away
the lower-level challenge of fuzzy, real-world perception.

6.4 Reactive Synthesis

There is extensive literature on the synthesis of reactive programs from temporal specifications.
Early work such as that of Pnueli and Rosner [Pnueli and Rosner 1990] involved doubly exponential
algorithms with little possibility of practical use. However, in 2012, Bloem et al. [Bloem et al. 2012]
showed that this style of synthesis could be made tractable by restricting it to a subset of temporal
logic known as GR(1). However, that work has been limited to synthesizing finite state automata
from temporal specifications and it is not obvious how to apply it to inductive synthesis.
There is also extensive literature on synthesizing finite state models from examples, starting

with the seminal work of Dana Angluin [Angluin 1987]. This work relied on an ongoing interaction
with an oracle to provide examples until a correct automaton was found. The initial algorithm has
served as a basis for a number of more sophisticated methods and has been used extensively for
automated model creation. There are now several mature tools for induction of finite state machines
from examples [Combe et al. 2010]. For example, LearnLib [Raffelt and Steffen 2006] is a popular
automata synthesis library that has been used in a number of applications. Vaandrager [Vaandrager
2017] provides a survey of several recent methods and applications of automata learning. In
addition, symbolic automata synthesizers [Drews and D’Antoni 2017], which learn more expressive
automata in which the alphabet is given by a Boolean algebra and the transition labels are first-order
predicates, are a very relevant future direction to explore for automata synthesis in AutumnSynth.
Abstraction is another technique that has been applied to learn more expressive functions. For

example, Cho et al. [Cho et al. 2010] demonstrate the use of automata inference together with
abstraction to discover botnet command and control protocols. Even with these extensions, however,
none of these systems match the expressiveness of AutumnSynth, which can generate programs
with unbounded lists of objects, each with their own finite state, and with the expressiveness
afforded by syntax-guided synthesis.
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7 FUTUREWORK

7.1 Transitioning to Learned Heuristics

The effectiveness of AutumnSynth at synthesizing models of a domain relies on a carefully-tuned
inductive bias, which is currently curated by a user with knowledge of the domain. Explicitly,
sources of bias include the proximity biases of the object mapping step (e.g. assuming objects do
not move very far from their original positions in a single time step); the heuristics used to filter
the abstract update function matrix in the update function synthesis step; the structure of the event
search spaces (including the smaller co-occurring event and transition event spaces, which contain
events more likely to be actual co-occurring and transition events than the full event space); the
priority given to events composed of fewer atom events during event search; and the constraining
of automata search via the closest co-occurring event, along with other automata search heuristics.
In the future, we hope to explore learning some of these biases instead of having to hand-curate
them. For example, we are interested in learning a library of higher-level Autumn functions useful
for synthesis starting from a small set of lower-level components in the style of DreamCoder [Ellis
et al. 2021], and learning some of the lower-level heuristics used for update matrix filtering.

7.2 Extensions to Broader Problem Settings

A key limitation of AutumnSynth is that it does not infer probabilistic programs, excluding
the minimal handling of non-determinism implemented for the EMPA experiments. We hope to
extend AutumnSynth to synthesize this broader space of Autumn programs in the future, a
task that will require notable changes in formalism (e.g. integrating with a Bayesian synthesis
paradigm). In addition, we are ultimately interested in applying AutumnSynth-style synthesis
in the context of model-based reinforcement learning (RL). Programmatic world models, such as
Autumn programs, offer the advantages that they can be learned from relatively fewer observations
than in traditional RL, and that their symbolic structure allows them to be more effectively analyzed
to aid in exploration and planning. Extending AutumnSynth so that Autumn programs are
synthesized incrementally via error correction with each new observation (online learning), rather
than re-running the full synthesizer at each time, is one important direction of interest. Finally,
beyond grid domains, other theory induction domains in which the integrated automata and
functional synthesis approach of AutumnSynth can apply include learning models of single-page
web apps employing a mix of latent and visible state, a challenging problem in software testing.

8 CONCLUSION

We have presented a new functional reactive domain-specific language (Autumn) suitable for
expressing and synthesizing non-trivial grid world programs, and a new algorithm (AutumnSynth)
that induces functional reactive programs in this language from observation data. We have empiri-
cally evaluated our algorithm on a new benchmark suite of 30 Autumn programs that we call the
Causal Inductive Synthesis Corpus (CISC), as well as on a third-party dataset of 27 grid-world-style
games written in Python. Our evaluation shows that AutumnSynth is able to synthesize long
programs describing complex dynamics and latent state, and is able to do so from long input traces
containing hundreds of frames. Looking ahead, we expect AutumnSynth will provide a template
for how to integrate functional and reactive synthesis in other theory induction domains.
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A APPENDIX

In the following section, we provide some additional details about the AutumnSynth algorithm
and evaluation. For full details, see our implementation.

A.1 Additional Evaluation Details

A.1.1 Further CISC Analysis. We briefly discuss the reason behind why the Sketch-based Au-
tumnSynth variants timed out on a number of the CISC benchmarks. Those benchmark programs
require large latent automata that, in particular, have many hidden states, which are additional
accept states corresponding to a state-based update function. More precisely, every update function
triggered by a latent-state-based event must have at least one accept state in the automaton. For
this reason, the number of states in the automaton must be at least the number of update functions,
so the Sketch solver begins its search for a satisfying automaton by searching among automata
with this minimum state count. If a solution is not found, Sketch will keep incrementing this state
count until it finds a correct automaton. Hence, when the actual number of states in the desired
automaton is much larger than the number of update functions (e.g. of the 11 states in the Count V
automaton, 8 states are hidden), the underlying SAT solver does not terminate quickly, resulting
in a timeout. This also explains why the Sketch-based algorithms time out on a few of the EMPA
benchmarks. The Heuristic algorithm avoids these sinks by means of some domain-specific tricks,
though we emphasize that the algorithm is not complete and will not work on every input.

A.1.2 Modifications to AutumnSynth for the EMPA Domain. In Section 5.2, we described that
lower-level modifications to AutumnSynth were made before applying the algorithm to EMPA.
In this section, we provide further detail about these changes to give a sense of the nature of the
modifications that may be needed to apply AutumnSynth to new domains.
With respect to update function synthesis, we introduced a few new heuristics to the update

function filtering algorithm in order to account for some of the nuances of EMPA games. For
example, unlike CISC programs, many EMPA programs are characterized by objects moving at
regular time intervals of 5, 12, 16, etc. time steps. Knowing this fact about the domain, we apply
some heuristics that check for time-regularity-based motion in the update function matrix, so that
the concrete matrix produced does not describe objects to be moving at off-times (e.g. by assigning
prev obj instead of a motion-causing update function at a time when an object should not be
moving, if there is ambiguity). The standard frequency-based filtering technique is applied after
the modifications made by this regularity-based heuristic.
In addition, regarding cause synthesis, we added a few new library functions that capture

some common behaviors in the EMPA suite, which were originally more cumbersome to express
in Autumn. For example, we added a single function that captures “pushing” behavior, which
originally was expressed via a combination of a few different events in the event search space. This
was useful because many objects in EMPA games can push other objects, and variations of this
pushing behavior, which may have required a trigger event combining too many atomic events to
be searched for in a reasonable amount of time, can now be identified fairly quickly.
Lastly, we also provide a concrete example of how we modified the event search process to

handle the random events in EMPA games. Specifically, if a trigger event cannot be found for an
update function and the update function has a particular form, such as being an object addition,
that is typically caused by a random event, we assign the update function the trigger event,

(uniformChoice (list 1 2 3 4 5 6 7 8 9 10)) == 1,
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regardless of the actual underlying probability distribution. In other words, we only claim to binarily
identify that a particular update function is non-deterministic versus deterministic, rather than
infer an approximately correct probability distribution describing the behavior.

A.1.3 Event Search. We currently implement search through the space of conjunctions and dis-
junctions of atomic events using 𝑍3. We enumerate through events in order of increasing numbers
of atomic events contained within them, beginning with conjunctions and disjunctions of two
atoms, three atoms, etc. up to four atoms. We also include one five-atom form that appears fairly
frequently, the disjunction of five atoms, though we do not consider other combinations for the
sake of performance.

A.1.4 Level of Correctness Demanded in Single-Trace EMPA Experiments. Since we do not perform
a generalization experiment with test traces for the non-deterministic EMPA programs (because of
the challenge of comparing non-deterministic programs), we briefly provide a qualitative sense of
the generalizability of the single-trace-based learned models. This is important to clarify because a
trivial, overfitting synthesizer can always produce a program that simply regurgitates the given
input trace, without abstracting any of the observed dynamics into a smaller set of more generally-
applying on-clauses. In the Autumn language, such a trivial, trace-memorizing program is one in
which the number of on-clauses is equal to the total number of time steps, and each has the form,
for a time 𝑡 ,

on time == t

obj1 = ...

obj2 = ...

/* etc. (all individual object updates

that occurred at time t) */.

By design, AutumnSynth forces any program it synthesizes to abstract all instances of an update
function undergone by objects of a type into one on-clause, with a trigger event matching all those
instances. In other words, the algorithm compresses the information in the full input sequence of
grid frames into a small set of rules, where each rule describes a single abstracted trigger of all of
one update function’s occurrences across time and objects. Since the trigger events are not allowed
to use overly low-level component events such as time == t and are fairly small (conjunctions
or disjunctions of up to just five component events), all programs synthesized by AutumnSynth
hence inherently make generalizations significantly beyond the trivial trace-memorizing program.
Second, beyond this notion of compression, we further note that the trigger events learned

by the Heuristic and Sketch variants are often very close or equal to the ground-truth trigger
events, excluding cases where it is simply impossible to demonstrate all the scenarios in which an
update function might occur in one trace (i.e. multiple loss/agent death conditions; the D&C Sketch
solutions generalize less well). Any mistakes made by these synthesizer variants are akin to those
mistakes discussed in our CISC analysis, where some dynamic was omitted from the input trace,
and hence a learned event was too restrictive or, in some of the larger models with many on-clauses,
an on-clause was simply missing. For example, the synthesized program for the Aliens benchmark,
which contains 37 learned on-clauses, was later determined to be missing one on-clause because
the death of the agent object was accidentally never demonstrated in the input trace. These kinds
of mistakes may be fixed by creating a new trace demonstrating the missing behavior, as shown in
the multi-trace experiments.

Lastly, we conclude this section by emphasizing that the key claim we make about the Autumn-
Synth system does not rely upon these exact, lower-level details of how close the synthesized
EMPA programs are to the ground-truth programs (particularly given the possibility of performing
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multi-trace synthesis). Precisely, the fact that AutumnSynth is able to synthesize such abstract,
compressed models of these large programs from very long input traces at all is a feat unaccom-
plished by existing synthesizers, and is the main contribution of our work.

A.1.5 Note about Object Perception Algorithms. We mention that in our current implementation,
we use a list of colored pixel positions as the representation of the observed grid frames given as
input to the AutumnSynth algorithm, instead of raw images. The significance of this slightly more
processed representation is that, if two objects overlap at one pixel, the synthesizer does not need
to figure out from that pixel’s color and transparency value that there are really two overlapping
colors there. Instead, the input will already include two elements with the same x-y coordinates and
color, e.g. {(𝑥,𝑦, 𝑐𝑜𝑙𝑜𝑟 ), (𝑥,𝑦, 𝑐𝑜𝑙𝑜𝑟 )}. This detangling of pixels with overlap into their individual
components can be trivially performed by storing a mapping between (1) all RGBA values formed
via overlaps of a finite number of colors, and (2) the lists of colors that compose them. We decided
to bypass implementing this more complete object parsing algorithm because perception is not a
contribution of our work.

In addition, in our slightly modified implementation for synthesizing EMPA, we currently further
skip the object perception step by taking as input an object-ordered list of colored pixels saved from
a web interface for EMPA games, unlike the CISC implementation. More precisely, every object in
the EMPA suite is 10 pixels by 10 pixels, and the input list of pixels for any frame can be split into
groups of pixels corresponding to each object simply by dividing the list into sub-lists of size 100.
In the case of one benchmark program, Closing Gates, we refine this object representation further
by applying the multi-cell object parsing algorithm defined in Section 4.1 on top of the default 10
by 10 object units. This produces new object types composed of several 10 by 10 cells (e.g. forming
a type with dimensions 40 by 10). We bypassed the full object perception step in this way to focus
on the more interesting later steps of the algorithm in our evaluation, but it is certainly possible to
develop complete object perception algorithms that operate on EMPA frames.
Lastly, a few EMPA programs contain objects that, on certain events, change their uniformly

colored appearance by adding a small black stripe or progress bar over the original colored square.
Since the current AutumnSynth implementation only supports uniformly colored objects, we
ignore this stripe when creating input sequences for the synthesizer. For one benchmark program,
Survive Zombies, this modification makes it impossible to learn a full model of one dynamic
(stationary agent removal) with just a single trace, though it would be possible to do so if the stripe
was included. We leave this support for handling richer object appearances to future work.

A.1.6 Other Details. For the CISC single-trace experiments, we used a low-level optimization in
which AutumnSynth was run with two modes in a staggered manner, with AutumnSynth first
being run with a smaller event space (conjunctions and disjunctions of up to two atom events).
If this small event space failed, the system attempted automata synthesis before trying the full
event space (with up to five atoms) if automata synthesis also failed. We did not employ this
optimization for the CISC multi-trace synthesis experiments, and instead used just the smaller
search space mode or larger search space mode based upon whether the particular program required
it. Similarly, while AutumnSynth generally runs atop the output of two different object parsing
algorithms (multi-cell and single-cell) one after another, we used just the correct parsing algorithm
for each multi-trace benchmark. This allowed the runtimes to better reflect the scalability of the
key algorithm components given longer traces rather than waste time due to an incorrect parser.
Lastly, we provide details about the machines on which the experiments were run. The three

results tables were generated on different machines due to shared resource constraints. The CISC
benchmarks (Fig. 9) were run on a server with 2.40GHz CPUs and 26GB RAM, the EMPA benchmarks
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(Fig. 10) were run on a server with 3.3GHz CPUs and 98GB RAM, and the multi-trace experiments
(Fig. 11) were run on a machine with 4.9GHz CPUs and 16GB RAM.

A.2 Automata Synthesis via Abstraction Refinement

In this section, we provide some further intuition about our heuristic algorithm for automata
synthesis, since it is one of the more unusual contributions of our work. In particular, we describe
the algorithm as being closely related to counterexample-guided abstraction refinement. This is
because a more abstract, small-state automaton specification is iteratively refined in response to
errors until a concrete automaton satisfying the specification is found. We call the specification
a partial state sequence. Informally, it may be viewed as the current guess for the unrolled state
trajectory of the desired automaton, or the sequence of state values it underwent over time.

Definition A.1 (Partial State Sequence). Let S be the space of possible automata describing the
occurrence of a setU of unmatched update functions with the same co-occurring event 𝑐 . A partial
state sequence 𝑃S describing S is a time-ordered list of tuples, where each tuple contains a time
and an integer state hypothesized to be the state of the desired latent automaton at that time.

At initialization of the automata synthesis procedure, the partial state sequence contains only
elements corresponding to the times where the co-occurring event 𝑐 is true. Each of these times is
labeled with 1 through 𝑛 if one of the 𝑛 update functions 𝑢 ∈ U took place at that time, or 𝑛 + 1
if none of the update functions took place at that time. For example, the partial state sequence
corresponding to a possible 10-frame observation trace from the Gravity model is

𝑃S =
[{

𝑡=1
𝑠=1

}
,
{
𝑡=2
𝑠=1

}
,
{
𝑡=3
𝑠=2

}
,
{
𝑡=4
𝑠=2

}
,
{
𝑡=5
𝑠=3

}
,
{
𝑡=6
𝑠=4

}
,
{
𝑡=7
𝑠=4

}
,
{
𝑡=8
𝑠=1

}
,
{
𝑡=9
𝑠=1

}
,
{
𝑡=10
𝑠=2

}]
,

where the state labels 𝑠 = 1 through 𝑠 = 4 correspond to the four update functions moveLeft,
moveRight, moveDown, and moveUp, and no times have the label 𝑛 + 1 = 5 because one of the four
update functions took place at every co-occurring event (true) time. Similarly, the initial partial
state sequence for the bullet addition update function in the Mario program is

𝑃S =
[{

𝑡=1
𝑠=2

}
,
{
𝑡=2
𝑠=2

}
,
{
𝑡=5
𝑠=1

}
,
{
𝑡=6
𝑠=1

}
,
{
𝑡=7
𝑠=2

}
,
{
𝑡=9
𝑠=1

}
,
{
𝑡=10
𝑠=2

}
,
{
𝑡=11
𝑠=2

}]
,

where the state labels 𝑠 = 1 corresponds to bullet addition times and the state labels 𝑠 = 2
corresponds to times when the co-occurring event 𝑐 (clicked) was true but no bullet was added.

From the partial state sequence, a set of transition ranges is extracted, which specify the search
for transition events that label the edges in the final automaton.

Definition A.2 (Transition Range). A transition range is a set of time ranges corresponding to a
change in state value between consecutive elements of a partial state sequence 𝑃S . It is specified
by a (1) start state, (2) end state, and (3) set of (start time, end time) pairs corresponding to the time
periods in which that particular state change occurred.

For example, the transition ranges corresponding to the Gravity partial state sequence above are
(1) (𝑠 = 1, 𝑠 = 2) taking place during the time ranges (𝑡 = 3, 𝑡 = 4) and (𝑡 = 9, 𝑡 = 10),
(2) (𝑠 = 2, 𝑠 = 3) taking place during time range (𝑡 = 4, 𝑡 = 5),
(3) (𝑠 = 3, 𝑠 = 4) taking place during time range (𝑡 = 5, 𝑡 = 6), and
(4) (𝑠 = 4, 𝑠 = 1) taking place during time range (𝑡 = 7, 𝑡 = 8).
Similarly, the transition ranges corresponding to the Mario partial state sequence are
(1) (𝑠 = 2, 𝑠 = 1) taking place during time ranges (𝑡 = 2, 𝑡 = 5) and (𝑡 = 7, 𝑡 = 9), and
(2) (𝑠 = 1, 𝑠 = 2) taking place during time ranges (𝑡 = 6, 𝑡 = 7) and (𝑡 = 9, 𝑡 = 10).
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For each transition range, the automata synthesis procedure searches for an event in a pre-
specified space of transition events that occurs only during the specified time ranges. If such
a matching event is found for each transition range, we say that the partial state sequence is
satisfied, and the procedure terminates. For example, the events clicked rightButton, clicked
upButton, clicked downButton, and clicked leftButtonmatch the four transition ranges for Gravity
respectively, and hence form the labels of the latent automaton’s edges.
However, if no matching event is found for a particular transition range, the following process

is performed: First, the closest transition event, or the event that takes place during each time
range and occurs outside the time ranges as few times as possible, is selected. Second, for each
undesired time that this closest transition event takes place, the state value at that time in the
partial state sequence—or the nearest time in the sequence before that time, if it does not appear in
the sequence—is changed to a new, unused value. This causes the transition event

closest_transition_event && (latentVar == start_state),

where start_state is the start value of the transition range, no longer takes place at the extra times.
To provide a concrete example, this state specialization process takes place in the Mario program
when solving the state transition (𝑠 = 1, 𝑠 = 2), which occurs during time ranges (𝑡 = 6, 𝑡 = 7)
and (𝑡 = 9, 𝑡 = 10). No transition event takes place within only those ranges, since the closest
event clicked also takes place at the additional time 𝑡 = 5. Changing the state value at time 𝑡 = 5,
however, so that the new partial state sequence is

𝑃 ′
S =

[{
𝑡=1
𝑠=2

}
,
{
𝑡=2
𝑠=2

}
,
{
𝑡=5
𝑠=3

}
,
{
𝑡=6
𝑠=1

}
,
{
𝑡=7
𝑠=2

}
,
{
𝑡=9
𝑠=1

}
,
{
𝑡=10
𝑠=2

}
,
{
𝑡=11
𝑠=2

}]
,

makes it so that the event clicked && (latentVar == 1) satisfies the new specification for the state
change (𝑠 = 1, 𝑠 = 2), which now only occurs during (𝑡 = 6, 𝑡 = 7). In other words, by splitting
the original state 𝑠 = 1 into two states 𝑠 = 1 and 𝑠 = 3, the transition range (𝑠 = 2, 𝑠 = 1) is
solved. Having refined the partial state sequence in this way, the algorithm proceeds by repeating
transition search and state specialization for the rest of the transition ranges, until a transition
event is found for each transition range without need for additional specialization. We employ a
few additional variations of the error-driven state splitting technique described here to get this
procedure to converge to the desired solution. In the Mario program, the final partial state sequence
𝑃
𝑓

S ends up being

𝑃
𝑓

S =
[{

𝑡=1
𝑠=2

}
,
{
𝑡=2
𝑠=2

}
,
{
𝑡=3
𝑠=1

}
,
{
𝑡=5
𝑠=3

}
,
{
𝑡=6
𝑠=1

}
,
{
𝑡=7
𝑠=2

}
,
{
𝑡=9
𝑠=1

}
,
{
𝑡=10
𝑠=2

}
,
{
𝑡=11
𝑠=2

}]
,

where the additional 𝑠 = 1 state is created because no transition event could be found to match the
state change (𝑠 = 2, 𝑠 = 3). The transition events associated with this final state sequence are then
(1) (𝑠 = 2, 𝑠 = 1) → intersects (prev mario) (prev coins),
(2) (𝑠 = 1, 𝑠 = 3) → intersects (prev mario) (prev coins),
(3) (𝑠 = 3, 𝑠 = 1) → clicked, and
(4) (𝑠 = 1, 𝑠 = 2) → clicked.

We note that the state labels are slightly different from those depicted in the diagram of this
automaton in Fig. 5. In the actual synthesized automaton with states and labels described above,
the state 𝑠 = 2 corresponds to Mario having collected 0 coins, the state 𝑠 = 1 corresponds to Mario
having collected 1 coin, and the state 𝑠 = 3 corresponds to Mario having collected 2 coins. For the
diagram, we permuted and decremented these labels by 1 so that they exactly lined up with the
number of collected coins, just for ease of understanding; the two are semantically equivalent.
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B ADDITIONAL FIGURES

 Model Name Description 
 Ants Ants foraging for randomly generated food particles. 

Chase Agent evading randomly generated enemies. 
Magnets Two magnets displaying attraction/repulsion. 

Space Invaders A clone of Atari Space Invaders. 
Sokoban A clone of Sokoban. 

Ice Water particles behaving like solids vs. liquids. 

La
te

nt
 S

ta
te

 

Lights Clicking turns on/off a set of lights. 
Disease Sick particles infect healthy particles. 
Grow I Flowers grow upon water addition and sunlight. 
Grow II Same as above, but plant stems grow longer. 

Sandcastle I Water causes sand particles to turn liquid from solid. 
Sandcastle II Same as above, but buttons match water/sand colors. 

Bullets Agent that can shoot bullets in four directions. 
Gravity I Blocks move according to four gravity directions. 
Gravity II Same as above, except colors of added blocks rotate. 
Gravity III Blocks move according to nine gravity directions. 
Gravity IV Same as Gravity I, except there are eight gravities. 

Count I Weighted left/right movement, with two weights. 
Count II Weighted left/right movement, with four weights. 
Count III Weighted left/right movement, with six weights. 
Count IV Weighted left/right movement, with eight weights. 
Count V Weighted left/right movement, with ten weights. 

Double Count I Weighted left/right/up/down, with four weights. 
Double Count II Weighted left/right/up/down, with eight weights. 

Wind Snow falls left, down, or right based on wind state. 
Paint A simplified clone of MSFT Paint, with five colors. 
Mario A Mario-style agent collects coins and shoots enemy. 

Mario II Same as above, but enemy has two lives, not just one. 
Coins Agent can collect 10 coins which convert to bullets. 

Water Plug Water interacts with a sink and removable sink plug. 
 

Fig. 12. Descriptions of the 30 benchmark programs in the Causal Inductive Synthesis Corpus.
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Fig. 13. Stills from a sample of programs in the EMPA suite [Tsividis et al. 2021], resized to fit neatly into the

figure. (a) Avoid George, where the dark blue agent must avoid the yellow enemy, which chases it and the

randomly moving green objects. (b) Missile Command, in which the dark blue agent must get to the green

goal before the gates close. (c) Portals, in which some blocks teleport the agent to other blocks. (d) My Aliens,

in which the agent collects orange and is killed by purple objects. (e) Plaque Attack, in which the agent can

shoot at orange enemies before they reach the yellow goals. (f) Bees and Birds, where the randomly moving

yellow objects can kill the enemy before it reaches the green goal.
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Fig. 14. Sample latent state automata synthesized by AutumnSynth on the CISC domain. (a) Paint model.

Each state corresponds to a different color, indicating the color of the block added when a user clicks on an

empty grid square. Pressing up cycles through the colors. (b)Water Plug model. Clicking one of three colored

buttons changes the color of the block added when a user clicks an empty grid cell to the color of the button.

(c) Gravity III model. Each state corresponds to one of the nine directions of motion formed by crossing

three possible x-directions (-1, 0, 1) with y-directions (-1, 0, 1). (d) Wind model. Snow particles fall downward,

left-diagonally, and right-diagonally, depending on the wind state that changes with left/right arrow keys.

(e) Count IV model. Instead of giving the Autumn language description for this automaton, we show the

on-clauses for the update functions that depend on the latent variable instead. Here, a particle moves left if

the total number of left presses is greater than the total number of right presses up to a maximum difference

of 4. It moves right according to a similar rule, and is stationary in state zero.
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