Synthesis of Reactive Programs with Structured Latent State

Motivation

Objective: To inductively synthesize functional re-
active programs, i.e. from a finite data sequence.

Why does it matter? Reactive settings are plen-
tiful in the real world (e.g. a robot or self-driving car
operating on the street and updating its time-varying
environment model, or a child learning how a video
game works by watching for some time), but existing
techniques do not learn these programs from data.
Standard reactive synthesis inputs a logical formula
and outputs an automaton. Programs are often more
useful representations than automata, because large
numbers of automaton states can be abstractly ex-
pressed in compact programs.

Why is it hard? While programs scale better
and are more useful, standard methods for functional
program synthesis cannot synthesize time-varying
latent state, the core element of reactive settings.
Precisely, functional synthesis expects its inputs and
outputs to be fully observed, but both the inputs and
outputs are partially observed in a reactive setting.

Our Solution: How can we inductively synthesize
programs with time-varying latent state? Our ap-
proach is to integrate functional and (induc-
tive) automata synthesis. We first try to syn-
thesize the program using functional synthesis; if this
fails, automata synthesis generates new latent state
that then enables functional synthesis to succeed.

Methodology: We instantiate our algorithm in the
domain of time-varying, interactive, Atari-like grid
worlds, and write programs using a language called
AUTUMN. An AUTUMN program defines object and
latent (integer) variables, and describes grid-world
dynamics using statements of the form on event
update, where update changes a variable’s value.
Given a sequence of observed grid frames and user
actions, we seek the program in the AUTUMN lan-
ocuage that generates the observations. Concisely, we
want to learn (latent) variables and on-clauses.

Running Example: In the Mario program (top-
center column), the agent (red) moves around with
arrow keys and collects coins (gold). If the agent has
collected a positive number of coins, on a click event,
a bullet (black) is released upwards, and the agent’s
coin count is decremented. The number of collected
coins is not displayed anywhere on the grid at any
time, so the only way to write an AUTUMN program
for Mario is to define a latent or tnwvisible variable
that tracks the number of coins.

Ria Das, Joshua B. Tenenbaum, Armando Solar-Lezama, Zenna Tavares
MIT CSAIL

The AutumnSynth Algorithm: An Overview

INPUT

sequence of grid
frames and (not
shown) user actions.

PERCEPTION &
TRACKING

Objects are parsed
from frames and

mapped to objects Iin
subseq. frames.

UPDATE

FUNCTION
SYNTHESIS

Each object-object
mapping is described
with an Autumn expr.
(update function).

EVENT

SYNTHESIS
For each distinct

update function in
an object type, a
trigger event is
sought (i.e. one that
Is true at exactly the

update func’s times).

AUTOMATA
SYNTHESIS

When no matching

event is found, new
latent state (in the

form of an automaton)
Is made so a matching
event can be written.

Here, we have named
the latent variable

numdCoins.

OUTPUT

Autumn program that
creates observations.

-h

B x1@6.0 FFHx1@5 0

ll . ll 1 _“““__"ll_"”.”
B x 1@ (9, 0)

U U
B x 1 @ (11,0)
|

er_
(E-rfﬂ%

CSAIL

AutumnSynth Algorithm: Automata Learning

t=N
=—|—|—H—|—| : ® func. occurs

1%

t=0
addObj times ~ |—]

clicked times

I@E‘ | * *@I ‘ *Eﬁll.eventistrue

|
I false positive
[faise p

clicked && latent |
_var ==4¢) times — | |

desired latent_var | ’ ’ |

oo

|-

= | | ¢ | I I:‘rejet:.t'q.af:,als

RXXHE

©® accept vals

Objects in same

row are assigned
the same id.

x3@ ... x3@ ... x3@ ... x3@ ... [Ix3@ ...
0 x3@ ... 0 x3@ ... x1@(7.4) - O x1@(7.4) O x1@ (7. 4)
N x1@(7,15 O x1@ (6,15) 0 x1@ (11,6) 0 x1@(11,6) 0 x1@ (11,6)
B x1@ (11.4) m x1@ (11, 1)

L I L Il

- - : removeObj
[TT11:

- : moveLeft - : moveRight S : moveRight
: [IT1- [IT11:

O - 1 :removeObj 0 -] ‘l'x\
I :moveRight [: nextSolid O : nextSolid O : nextSolid
B :addObj H : moveUp B :removeObj
I

Describes object

changes during
last time step.

UPDATE FUNCTION

PREDICATE

true

intersects - []

movelLeft >

]
m

remn:.reﬂhj ' >
[TT11:
: removeObj » intersects[] W
moveRight * right
O : moveleft > Jeft
nextSolid > lrue
movelp » frue
A M :removeObj > f‘A'H-‘te'm'z'f-‘r11?5- [No event found:
addObj + FAILURE === i vent latent var.
1p lllrﬂ.-----------l--II------I-il

on intersects - O
removeObj B

Automata
synthesizer

J

¥ initialize start state

numCoins : Int

numCoins = init 0 next (prev numCoins)

* state transitions

on intersects | && (numCoins == 0)

?y”__ numCoins = 1

| |f 1 | on intersects [0 && (numCoins 1)
“ ! numCoins = 2

clicked && (numCoins

numCoins = 1

clicked && (numCoins

numCoins = 0

intersects

- =

intersects

e

on = 2)

on =])

SUCCESS

» clicked && numCoins > 0

| = intersects [] [

transition intervals V .U, |
' @=1{0)
. |
transition events c C 1 &= {1, 2}
AUTOMATON | ¢ ¢ | |
' C =clicked
state sequence 0 0 1 :
|
|

Figure 1: No event matches the add0Obj update function’s times, but the “closest” match is
the clicked event, which co-occurs with add0Obj but also occurs on false positive times. We
coerce clicked into being a matching event by and-ing it with a predicate involving a new
integer latent variable. This variable must take one set of values during the false positive times
(indicated by red star), and another set during the true positive times (indicated by green star).
Then, the event in the third row matches add0bj’s times. To define this variable, we must
find transition events that are true within the intervals between true and false times (false-to-
true intervals are black, and true-to-false are gray). These transition events are clicked and

intersects, corresponding to the edges in the automaton diagram in the previous column.

Example Synthesized Automata

Water Plug: Clicking on an empty square adds a colored square. The square
color depends on the last of the three lettmost buttons clicked.

[T = “HE | [N = F‘]] = HN

et e
T ki

clicked
blueButton

// initialize start state
active : Int

active = init 0 next (prev active)
// state transitions

on clicked blueButton
active = 1

H..I

clicked
purpleButton

on clicked orangeButton
active = 2

on clicked purpleButton
active = 0

Paint: Inspired by MSEFT Paint. Clicking an empty square adds a colored
square, and the five different colors may be cycled through by pressing up.

up

I:I up

% 1nitialize start state
activeColor : Int

activeColor = init 0 next (prev activeColor)
% state transitions
on up && (activeColor == 0)
up activeColor =1
on up && (activeColor == 1)
activeColor = 2
on up && (activeColor == 2)
activeColor = 3
on up && (activeColor == 3)
up o upP activeColor = 4
on up && (activeColor == 4)
activeColor = 0

