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Abstract

A popular and archetypal class of distributional semantic models is based
on the theory that words can be represented as points in a high-dimensional
semantic space. The classic definition of word similarity in these models
is some function of the distance between two word vectors. However, such
a similarity measure fails to account for many human word associations
that are asymmetric or directed. For example, when presented with a word
such as wick, subjects are quick to think of the word candle, but when pre-
sented with candle, they are more likely to think of words like flame and
wax before wick, indicating that wick is more strongly associated to candle
than candle is to wick. In this paper, we evaluate an asymmetric similarity
measure based on word vector projections to improve the predictions of
spatial semantic models of directed psychological association. We find that
the projection-based metric generates predictions that match human asso-
ciation data to a statistically significant extent, though greater accuracy
remains desirable.

1 Introduction

Spatial models of lexical semantics have endured sig-
nificant criticism over the years, the most potent
of which is directed at the fundamental tenets of
this category of models. Specifically, representations
of words as vectors in multidimensional space have
traditionally employed similarity metrics based on
the Euclidean distance between vectors [1]. Points
that are closer together in space represent concepts
that are more similar to each other. Consequently,
the similarity relationships encoded by these geomet-
ric models must satisfy certain axioms, which were
first noted by Tversky (1977): (1) The distance be-
tween a vector and itself must equal 0; (2) the dis-
tance between two vectors must be symmetric; and
(3) the distances must satisfy the triangle inequality
[2]. However, human similarity judgments have been
shown to repeatedly violate these axioms, calling into
question the validity of spatial approaches in model-
ing human psychological associations.

For example, when humans hear a word such as
funeral, they are more likely to think of the word
wake than they are to think of the word funeral af-
ter first hearing the word wake. The difference in the

likelihood that subjects associate one word with the
other depending on which word they are presented
with first suggests that there is an inherent direc-
tionality in human similarity judgments. A symmet-
ric distance-based similarity measure cannot account
for these observations.

Many hypotheses have been proposed to try to
explain why human similarity judgments are often
asymmetric. These explanations include prototype
theory, which asserts that some elements in group are
more representative of the group than other elements.
Another hypothesis is that the degree of generality of
a word plays a role, and that words that are more
general are associated less with words that are more
specific [3]. Despite the large body of experimen-
tal evidence against their ability to accurately model
human similarity judgments, however, spatial mod-
els remain very common. The idea that any human
behavior, including free association, is the result of a
cognitive process operating on some type of memory
structure that is spatially related is very natural and
remains popular [1].

In this paper, we experiment with a new approach
to defining similarity in spatial semantic models, to
amend the documented inability of such models to ac-
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count for asymmetric free association data. We con-
struct our new model of similarity based upon projec-
tions of one word vector to another, taking advantage
of the inherent directionality in the definition of a pro-
jection vector. We apply our model to GloVe vector
representations (trained on the Common Crawl 42B
corpus) of pairs of words taken from two databases
on free association norms, and compute the correla-
tion between the human responses and our model’s
predictions.

The rest of the paper is structured as follows: In
Section 2, we introduce our definition of word simi-
larity in a spatial semantic model. In Section 3, we
describe our experimental setup, detailing the con-
tents of our reference datasets and how we processed
them to generate our plots. In Section 4, we discuss
the results of our experiments, and further compare
with an earlier approach to integrating an asymmet-
ric similarity measure with a spatial model.

2 Similarity Metric Definition

When thinking about how to geometrically represent
a directed relationship between two vectors, the vec-
tor projection is a natural answer. If ~v1 and ~v2 are
two vectors in an n-dimensional vector space, then
proj~v1~v2 represents the component of ~v2 that lies
along ~v1, while proj~v2~v1 represents the component
of ~v1 that lies along ~v2. An immediate hypothesis
about how to interpret this concept of projection in
the context of vector representations of words is to
let the projection of one word onto another word re-
late to how similar the first word is to the second
word. For example, let the word “China” = w1 and
“Korea” = w2, to use an oft-cited instance in the
similarity literature. Then, proj~w1

~w2 would relate to
the similarity of Korea to China, and proj~w2

~w1 would
relate to the similarity of China to Korea.

We must be careful in reasoning about what types
of comparisons between the two directed vector pro-
jections would correlate with the degree of asymme-
try in the similarity relationship between two words.
A first guess at a comparison metric would be to use
the ratio between the norms of the two projections,
i.e.,

sym(w1, w2) ∼ proj~w2
~w1

proj~w1
~w2
,

where sym(w1, w2) represents the symmetry of the
similarity relationship between two words w1 and
w2. If sym(w1, w2) ≈ 1, then word w1 is roughly
as similar to word w2 as word w2 is to word w1.
If sym(w1, w2) >> 1 or sym(w1, w2) << 1, then
the similarity relationship between the two words is

asymmetric. At first glance, one might think that
sym(w1, w2) >> 1 means that w1 is more similar
to w2 than w2 is to w1, because it is natural to as-
sume that the norm of the projection of ~w1 onto ~w2

is directly proportional to how similar w1 is to w2.
However, we debunk this assumption by looking at
some sample data points (word pairs with experimen-
tally determined directional similarity) along with in-
tuition about corpus-derived vectorizations of words.

We note that

proj~w2
~w1

proj~w1
~w2

=
|~w1| cos θ

|~w2| cos θ
=
|~w1|
|~w2|

,

so that our definition sym(w1, w2) represents the ra-
tio between the norms of the two word vectors. Since
this definition does not capture information related to
the angle between the two vectors, one might think
that it could not possibly capture the similarity rela-
tionships between two word vectors. Indeed, between
words that are very different, which, in terms of se-
mantic space models, implies that the angle between
the word vectors is large, then a ratio between the two
vector norms likely does not signify much. However,
for similar words (e.g. with angles less than π/2), it
can be argued that the shorter vector is likely to be
more similar to the longer vector than the longer vec-
tor to the shorter vector. The intuition behind this
logic is that the longer GloVe vector is likely to be
similar to more vectors than the shorter vector, be-
cause the greater sum of its squared coordinates in-
dicates that it has stronger relations with other word
vectors that are high-valued in other dimensions.

This intution is validated by several examples of
word pairs that display asymmetric similarity rela-
tions, and in which the word with the shorter vector
is more similar to the word with the longer vector.
For example, to use the China-Korea example, ex-
periments have shown that subjects tend to believe
that Korea is more similar to China than China is
to Korea, and the norms of the China and Korea
GloVe vectors are 7.711 and 7.108, respectively. To
give another example, the word “ace” is more similar
to “bandage” than “bandage” is to “ace,” and the
GloVe vectors for “ace” and “bandage” have norms
of 6.103 and 7.267. Thus, we decide to go forward
with evaluating this similarity definition in our ex-
periments.

Another similarity definition related to this dis-
cussion is the difference between the norms of the
projections of the two vectors as opposed to the ra-
tio, or

sym(w1, w2) ∼ proj~w2
~w1 − proj~w1

~w2,
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which can be written as

| ~w1| cos θ − ~w2| cos θ = (| ~w1| − | ~w2|) cos θ.

This definition is similar to the first in that it com-
pares the norms of the two word vectors, but it also
takes into account the angle between the two vec-
tors, which intuitively should also be related to word
similarity (though not asymmetry within a similarity
relationship). We hence decide to go forward with
testing this metric as well, so our two models are

1. sym(w1, w2) ∼ proj~w2
~w1

proj~w1
~w2

2. sym(w1, w2) ∼ proj~w2
~w1 − proj~w1

~w2.

In the first model, sym(w1, w2) >> 1 means that
w2 is more similar to w1 than w1 is to w2, and in
the second model, sim(w1, w2) >> 0 means that w2

is more similar to w1 than w1 is to w2.

The idea of using projections in computing the
similarity between two words in a spatial seman-
tic model is not entirely new. Pothos et. al. de-
scribe a model of word representation based on Quan-
tum Probability theory, in which concepts are repre-
sented by different subspaces (with possibly multidi-
mensional bases) and directional similarity relates to
the projection from one subspace to another. How-
ever, Pothos et. al. describe this concept only theo-
retically within the framework of QP theory, without
testing it empirically with existing datasets on word
similarity [4]. The purpose of this paper is to em-
pirically test these projection-based metrics against
human data on the asymmetry of word similarity re-
lationships, and we discuss our experimental setup in
the following section.

3 Testing the Metric

We outline the methods by which we implemented
our model and generated relevant data and plots, be-
ginning with some more information about the refer-
ence data we consulted.

3.1 Reference Data

We evaluate the performance of our metric using two
datasets containing the results of free association ex-
periments. The first and smaller dataset comes from
the association experiments run by McRae for words
representing living and non-living concepts, and the
second dataset is from the University of South Florida
Free Association Norms database.

3.1.1 McRae Dataset

In the McRae association experiments, rougly 725
participants were given a set of 541 words represent-
ing living (“bird”) and non-living (“chair”) concepts,
called cues, and were tasked with writing down the
first three words related to each cue that came to
their minds in order. The resulting dataset consists
of 1169 rows of cue-response word pairs, along with
the number of participants that wrote the response
word to each cue first, second, and third, along with
the total number of participants that wrote down that
response. Two example rows from the McRae dataset
containing the columns relevant to our analysis are
shown below:

Figure 1: Example from McRae data

In this representation, C stands for Cue, R for Re-
sponse, #R1 for number of participants who wrote
down this response first, #UT for the unweighted
total number of participants who wrote down this re-
sponse as one of their three words, and #WT for the
weighted total number of participants (where writ-
ing down first has a higher weight than writing down
third).

3.1.2 USF Dataset

In the USF Word Association, Rhyme and Word
Fragment Norms study, participants were given cue
words and asked to write down a single response word
that they associated with the cue. A total of 5,019
cue words were used, and each row in the resulting
database consists of a cue word C, a response word
R, and a number of metrics related to the number
of participants who responded to each cue with the
particular response. Four of these metrics that are
of interest to us are #G, the number of participants
who were presented with the particular cue word C;
#P, the number of participants who responded to C
with R; FSG, or forward strength, the ratio of #P
to #G; and BSG, or backwards strength, the ratio of
FSG to BSG from the row where the (cue, response)
pair is reversed. Two example rows from the USF
database are given below:

Figure 2: Example from USF data
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3.2 Methodology

We describe how we generate our experimental data
using the McRae and USF datasets in conjunction
with the pre-trained GloVe vectors. In both evalua-
tion datasets, we are interested in the pairs of words
(w1, w2) that appear in both the form (w1, w2) =
(cue, response) and (w1, w2) = (response, cue). In
the USF dataset, these rows are easy to identify, be-
cause they are the ones with both FSG > 0 and BSG
> 0. In the McRae dataset, we iterate through each
row in the dataset and explicitly check if the reversed
word pair is also present in the dataset.

For each dataset, once we have collected all of
the pairs that appear in both forward and reverse
cue-pair relationships, we extract the Common Crawl
GloVe vectors for each word represented among the
pairs. We then compute the projections projw1

w2

and projw2
w1 for every pair of words (w1, w2) in our

collection. Finally, we plot the human data (first
response counts, unweighted total response counts,
and weighted total response counts for the McRae
dataset, and the response ratios for the USF dataset)
against the ratios of the two projection norms (Sec-
tion 4). We use the plotted data to additionally com-
pute other measures to compare this projection model
to previous attempts at modeling asymmetric similar-
ity relationships (Section 5).

Specifically, we use the following forms of the hu-
man data in our plots:

1. McRae: Difference of #R1 of (w1, w2) to #R1
of (w2, w1)

2. McRae: Difference of #UT of (w1, w2) to #UT
count of (w2, w1)

3. McRae: Difference of #WT of (w1, w2) to
#WT of (w2, w1)

4. USF: Ratio of #FSG to #BSG for each (w1, w2)

5. USF: Difference between #FSG and #BSG for
each (w1, w2)

These y-coordinates are plotted against both
the ratio |projw1

w2|/|projw2
w1| and the difference

|projw1
w2| − |projw2

w1| for each (w1, w2) in our col-
lection, as discussed in Section 2.

4 Results and Evaluation

We begin by discussing the preliminary plots of the
McRae and USF association data against the ratios of
and differences between the projection norms. These
plots are shown in Figures 3 and 4.

4.1 Preliminary Experiments

We first consider the McRae plots (Figure 3). After
eliminating the cue-target pairs that did not also ap-
pear in reversed target-cue order, there remained 47
pairs of words in the dataset. Though the size of this
sample is not large enough to draw far-reaching con-
clusions about the effectiveness of our projection mea-
sure in generally predicting psychological directed
association, it is an interesting first test nonethe-
less. When we plotted the McRae experimental data
against the ratios and differences of the computed
projection norms for each of the 47 pairs, we found
surprisingly significant Pearson and Spearman corre-
lation coefficients: The average of the Pearson corre-
lation coefficients across all six plots (#R1 vs. norm
ratio, #R1 vs. norm difference, #UT vs. norm
ratio, #UT vs. norm difference, #WT vs. norm
ratio, #WT vs. norm difference) was −0.444, and
the average of the Spearman correlation coefficients
was −0.45. The negative sign in the correlation co-
efficients is consistent with our predictions, because
we expect projection norm ratios greater than 1 and
norm differences greater than 0 to correspond with
target words being more strongly associated to cue
words than cue words to target words. This is rep-
resented by experimental data ratios less than 1 and
experimental data differences less than 0 (according
to the direction of these ratios and differences in our
definition). In addition, the plots with the projection
norm ratios on the x-axis produced slightly better av-
erage Pearson and Spearman correlation coefficients
(−0.449 and −0.474) than the plots with the pro-
jection norm differences on the x-axis (−0.439 and
−0.443), though not by a significant amount.

In addition to Pearson and Spearman coefficients,
we also calculated the accuracy of the model for each
plot, or the proportion of word pairs for which it cor-
rectly predicted the direction of association (without
regard to magnitude). These values were all high
with an average of 0.723, indicating that the model
classified the directions of association in the McRae
data quite well.
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(a) r = −0.409, ρ = −0.434, acc. = 0.681 (b) r = −0.487, ρ = −0.500, acc. = 0.766

(c) r = −0.452, ρ = −0.489, acc. = 0.723 (d) r = −0.416, ρ = −0.393, acc. = 0.681

(e) r = −0.460, ρ = −0.447, acc. = 0.766 (f) r = −0.442, ρ = −0.437, acc. = 0.723

Figure 3: Plots of McRae free association data against GloVe vector projection norm ratios and differences. r
represents the Pearson correlation, ρ represents the Spearman correlation, and acc. represents the proportion
of word pairs for which the metric correctly predicted the direction of association.

We next consider the USF plots (Figure 4). The
number of distinct pairs of words with both positive
FSG and positive BSG is 8316. When plotting the
USF experimental data against the ratio and differ-
ence in the projection norms, we decided to apply a
log transformation to the FSG/BSG ratios on the y-
axis to make any monotonic relations easier to see.
The Pearson and Spearman correlation coefficients
we obtained from these plots are lower than the those
obtained from the McRae data, with an average of
r = −0.210 and ρ = −0.211. The average accuracy
of predicting the direction of the asymmetry relation
for each pair of words is 0.574, less than the accuracy

for the McRae data. This is not unexpected given
the greater size of the USF dataset, which makes
its correlation coefficients and accuracy less affected
by random bias (of both the words selected as cues
and from the fact that different populations of re-
spondents produce different responses to cues). The
fact that the correlation coefficients are still nega-
tive and are of a not insignificant magnitude indi-
cate that the projection measure does capture some
aspect of the asymmetric similarity relationships be-
tween the words. We build off of this observation
of a weaker correlation given a larger dataset in the
following section, by looking specifically at the word
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pairs in the USF database that have clearly asymmet-
ric FSG/BSG values as opposed to the entire dataset

at once.

(a) r = −0.195, ρ = −0.208, acc. = 0.574 (b) r = −0.219, ρ = −0.214, acc. = 0.574

(c) r = −0.202, ρ = −0.209, acc. = 0.573 (d) r = −0.222, ρ = −0.214, acc. = 0.573

Figure 4: Plots of USF free association data against GloVe vector
projection norm ratios and differences.

4.2 Further Analysis of USF Data

We are interested in knowing whether the lower
asymmetry direction accuracies in the USF plots are
caused by the measure finding it difficult to classify
points that are roughly symmetric or are asymmet-
ric. If the lower accuracy is caused by misclassifica-
tion of roughly symmetric points, this does not indi-
cate a more systematic problem with the model, be-
cause it is difficult to determine which word in a pair
is more strongly associated to the other when both
words have similar association statistics. If the mea-
sure definition misclassifies the direction of the more
asymmetric pairs as often as it misclassifies the di-
rection of the more symmetric pairs, then it is more
likely that there exists an underlying problem with
the model. We generate statistics from which this
question by calculating the direction accuracy on the
subsets of word pairs with |FSG− BSG| above cer-
tain thresholds, shown in Figure 5. We note that
the accuracy increases steadily as symmetric points
are removed, indicating that the model predicts the

asymmetry direction of more extreme points well, as
desired.

Figure 5: Measure Accuracy for Asymmetric Points

4.3 Comparison with Previous Model

We finish our analysis by comparing our results with
those achieved by Michelbacher et. al., who devel-
oped two competing approaches to measuring asym-
metry in similarity relationships. Their first measure
was to use conditional probabilities, defining the as-
sociation of word w1 to word w2 as the joint proba-
bility of w1 and w2 divided by the probability of w2.
Their second measure was a rank measure based on
the χ2 statistical test. One of their statistics com-
paring the effectiveness of the two models considered
the top ten most asymmetric word pairs in the USF
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Figure 6: Measures calculated for ten most asymmetric word pairs in USF dataset.

database, and looked at how the two calculated mea-
sures corresponded to the human data. This experi-
ment performed with our projection-based measure is
shown in Figure 6. We find that our projection-based
measure predicted the correct direction of asymme-
try in just five out of the ten example pairs, while the
two measures by Michelbacher et. al. predicted the

correct direction for ten and seven out of the example
pairs. Though this negative result may be a result of
the small sample size of just ten word pairs (since
the average model accuracy for the top 50% of pairs
was calculated to be 72% in Section 4.2), this result
highlights an area of refinement for our model that
we will focus on in future extensions to this project.

5 Conclusion and Future Work

We introduced and evaluated two measures of asym-
metry in word similarity relationships in semantic
space models, both based on vector projections. We
computed these measures for the GloVe representa-
tions of pairs of words used in two free association
experiments, that conducted by McRae et. al. and
that used to create the USF Free Association Norms
database.

We found that our computed asymmetry scores
correctly predicted the direction of asymmetry for
72% of the relevant word pairs from the McRae
dataset, and 57% of the relevant word pairs from the
USF dataset. We further found that the prediction
accuracy of our approach on the USF data steadily
improved as we removed the more symmetric (and
hence more directionally ambiguous) pairs: With the
bottom 50% of word pairs based on degree of asym-
metry removed from the dataset, we found that the
prediction accuracy of our model jumped to 72%, in-
dicating that our model is better at classifying asym-
metric pairs than symmetric pairs. When looking at
the top ten most asymmetric pairs in the USF data,
however, we found that our model performed worse
than that of a competing model, despite the strong
average performance.

Future improvements to this project include per-
forming the same statistical experiments on GloVe
vectors trained on a larger corpus, such as the Com-
mon Crawl 840B-token corpus, as opposed to the
Common Crawl 42B-token corpus. In addition, as

indicated by the result in Section 4.3, we would like
to refine our constructed model so that we obtain
improved performance in predicting the directions of
asymmetric pairs. To do this, we should read more of
the existing literature on asymmetric similarity mod-
eling in spatial semantic models, and observe what
types of decisions about the construction of a measure
lead to more accurate predictions. A useful starting
point may be Pothos’s Quantum Probability model,
because the framework described in their paper pro-
vides several theoretical details that we did not ex-
plore in this first proof-of-concept paper.

I really enjoyed the first-hand experience of work-
ing with the idea that observable human behavior can
be modeled as arising from cognitive processes oper-
ating on a spatial representation of memory struc-
ture. It was exciting to see a model as simple as pro-
jections of word vectors achieve a degree of success in
capturing human psychological judgments. It makes
me motivated to continue thinking about this space of
problems related to how words/concepts and the rela-
tionships between them are represented in the human
mind. I am eager to continue working on the model
developed in this project, in particular by implement-
ing and further building off of the quantum probabil-
ity concepts described in the Pothos paper. I wonder
if a marriage between the spatial models of lexical se-
mantics and probabilistic models of cognition is pos-
sible, and whether such an integration would produce
a more accurate model of human memorial represen-
tation.
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